BRUCE L. SHERIN

A COMPARISON OF PROGRAMMING LANGUAGES AND
ALGEBRAIC NOTATION AS EXPRESSIVE LANGUAGES
FOR PHYSICS

ABSTRACT. The purpose of the present work is to consider some of the implications
of replacing, for the purposes of physics instruction, algebraic notation with a program-
ming language. What is novel is that, more than previous work, I take seriously the
possibility that a programming language can function as the principle representational
system for physics instruction. This means treating programming as potentially having
a similar status and performing a similar function to algebraic notation in physics learn-
ing. In order to address the implications of replacing the usual notational system with
programming, I begin with two informal conjectures: (1) Programming-based representa-
tions might be easier for students to understand than equation-based representations, and
(2) programming-based representations might privilege a somewhat different “intuitive
vocabulary.” If the second conjecture is correct, it means that the nature of the under-
standing associated with programming-physics might be fundamentally different than the
understanding associated with algebra-physics.

In order to refine and address these conjectures, I introduce a framework based around
two theoretical constructs, what I call interpretive devices and symbolic forms. A con-
clusion of this work is that algebra-physics can be characterized as a physics of balance
and equilibrium, and programming-physics as a physics of processes and causation. More
generally, this work provides a theoretical and empirical basis for understanding how the
use of particular symbol systems affects students’ conceptualization.

KEY WORDS: algebra, cognition, physics, programming, representations

1. INTRODUCTION

Almost since the earliest days of computers, it has been proposed that, as
part of their educational experiences, students should be asked to program
computers. These proposals have taken a variety of forms, have been
directed at students of a wide range of ages, and have employed a variety
of program languages. For example, there have been proposals to use
existing programming languages, such as Fortran, as a way to supple-
ment the instruction of older students (e.g., Bork, 1967). In addition, there
have been attempts to develop programming environments specifically
for children. These include such environments as Logo (Papert, 1967),

#‘ International Journal of Computers for Mathematical Learning 6: 1-61, 2001.
‘w © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2 BRUCE L. SHERIN

StarLogo (Resnick, 1994; Wilensky, 1997), Boxer (di Sessa, 2000), and
Agentsheets (Repenning, 1993).

In this paper, I will look at the possibility of introducing student
programming in one domain: physics. Within the discipline of physics,
equations and related mathematical notations play an extremely important
role. Physicists write equations and manipulate symbols in order to
perform extended and complex computations. Furthermore, physicists use
equations as a means of making precise and compact expressions of
physical laws, which then appear in academic papers and in textbooks.
Moreover, this importance extends to physics classrooms. Students are
introduced to fundamental laws through the use of mathematical notations.
And much of a physics student’s work involves the use of equations to
solve problems.

The present work considers some of the implications of replacing, for
the purposes of instruction, these algebraic notations with a programming
language. What is novel in this work is not the proposal to employ student
programming in physics instruction. In fact, we will see that, as a domain,
physics has seen some of the earliest and most persistent attempts to apply
student programming. Rather, what is novel is that, more than previous
work, I will take seriously the possibility that a programming language
can function as the principal representational system for physics instruc-
tion. This means treating programming as potentially having a similar
status and performing a similar function to algebraic notation in physics
learning. It means that instead of representing laws as equations, students
will represent them as programs.

In considering the implications of replacing algebraic notation with
programming, my focus will be narrowed in a number of important
respects. Certainly, there would be many superficial — or, at least, obvious
— differences in what students would be learning and doing. Students will
be learning programming and programming algorithms, rather than some
derivational and problem solving strategies that are particular to textbook
physics problems. However, my focus will not be on this level of differ-
ence. Rather, I am interested in whether there are fundamental differences
in learning and understanding that are traceable to features of the particular
representational languages employed.

1.1. Initial Conjectures

In essence, therefore, the purpose of this work is to compare programming
and algebra as ‘languages’ for physics learning. In the initial stages of
this research, I began with two informally stated conjectures concerning
important differences in these languages. Ultimately, as we will see, these

PROGRAMS AND ALGEBRAIC NOTATION 3

hypotheses were refined in a number of significant respects. Nonetheless,
it is helpful to begin with a statement of the intuitions that initially guided
this work.

1.1.1. Programs are Easier to Interpret than Equations

The first informal conjecture was that programs might be easier to under-
stand or interpret than equations. This conjecture derives from the obser-
vation that programs can be mentally ‘run’ to generate motion phenomena
(Sherin et al., 1993). The idea is that a programmer can do what a
computer does and step, line-by-line, through a program, a procedure that
appears relatively straightforward. In contrast, when I began this work,
I was not aware of any obvious candidates for a universal technique
that allows the generation of an associated motion phenomenon from an
equation.

This hypothesis, if correct, has important implications for instructional
applications. It has been a frequent observation of earlier research that
physics students tend to use equations without understanding; they write
equations from memory, and manipulate them in a rote manner (e.g.,
Larkin, McDermott, Simon and Simon, 1980; Sherin, in press). This is
seen to have devastating effects on the learning that occurs in physics
classrooms, since it means that a student’s conceptual understanding of
physics is not being positively impacted during the many hours of problem
solving that are typical of a physics students’ learning activities. Thus, if
programs are easier for students to interpret — if students are more likely
to use them ‘with understanding’ — there would be important instructional
implications.

1.1.2. Programming-Physics Privileges a Different Intuitive Vocabulary
The second informal conjecture is based in the notion that different symbol
systems might allow different ‘intuitive conceptions’ to be more or less
explicitly represented, and that those that are directly supported might
become privileged in the associated practice of physics. For example, as
I will attempt to argue later, there are reasons to believe that programming
languages may be better suited for expressing causal intuitions.

This second informal hypothesis is of particular importance in the
current endeavor because it points to the possibility that the very nature
of the understanding engendered by programming-based physics might be
different. As it turns out, this suggestion of a deep relationship between
conceptual understanding and symbolic formalisms is in agreement with
some fundamental intuitions of physicists concerning the nature of physics

4 BRUCE L. SHERIN

understanding. For example, in The Character of Physical Law, physicist
Richard Feynman states (Feynman, 1965):

The burden of the lecture is just to emphasize the fact that it is impossible to explain
honestly the beauties of the laws of nature in a way that people can feel, without their
having some deep understanding in mathematics. I am sorry, but this seems to be the case.
(p- 39)

Why not tell me in words instead of in symbols? Mathematics is just a language, and I
want to be able to translate the language. ... But I do not think it is possible, because
mathematics is not just another language. Mathematics is a language plus reasoning; it is
like a language plus logic. (p. 40)

In these quotes, Feynman expresses the intuition that, in some manner,
it is not possible to fully understand physics without being an initiate into
the physicist’s use of mathematics and the associated symbols. Feynman
tells his students that he cannot explain “in words instead of symbols.” To
understand physics, you must have the experience of living in the tight net
of physical relations expressed as equations, going from one to the other.
You have to write equations and solve them, derive one equation from
another, and from this experience develop a sense for the properties of the
equations and the relations among them.

If Feynman is right then, in replacing equations with a programming
language, we are not simply substituting one tool for another, we are
changing the very nature of physics understanding. This has important
implications for how we must understand the comparison that is at the heart
of this inquiry. If the second conjecture is correct, it will simply not be
appropriate to think of programming and algebra-based instruction as two
routes that lead ultimately to the same ‘conceptual’ understanding. I cannot
ask whether programming or algebra does certain jobs better, and I cannot
ask which of the systems better ‘represents’ physics knowledge. As an
alternative, I thus propose to ask and answer the following questions: How
does the understanding associated with ‘programming-physics’ differ from
‘algebra-physics’? And: Is ‘programming-physics’ a respectable form of
physics?

Other authors have been clear that representations do not simply
provide new ways of representing the same knowledge, they also shape
and determine the nature of knowledge. For example, in The Domesti-
cation of the Savage Mind, Jack Goody argues that the development of
written lists changed people’s practices as well as the very nature of knowl-
edge and understanding (Goody, 1977). Furthermore, similar notions have
appeared in many forms, and in a variety of literature. Jerome Bruner
spoke of external representations as a type of “cultural amplifier” (Bruner,
1966). Whorf hypothesized that the vocabulary and syntax of a language
shape the speaker’s view of reality (Whorf, 1956). Lev Vygotsky was

PROGRAMS AND ALGEBRAIC NOTATION 5

the father of a branch of psychology for which the internalization of
external signs plays a fundamental role in the development and character
of thought (Vygotsky, 1934/1986). And there is an extensive body of liter-
ature devoted to determining the effect of literacy on thought (e.g., Goody
and Watt, 1968; Scribner and Cole, 1981).

Although, in a sense, I will be following in the footsteps of these
authors, my claims will be much more modest than the strongest versions
proposed by earlier researchers. I certainly will not be arguing that the
changes in representational systems proposed would lead to sweeping
changes in the way that students think, across all domains and contexts.
Rather, my claims will be much more localized, while still remaining
fundamental; I will be looking for deep differences in physics under-
standing.

1.1.3. Refining the Hypotheses: Interpretive Devices and Symbolic Forms
As I mentioned, the informal hypotheses will be refined as I proceed. The
refined analysis will be based on a framework that is centered around two
theoretical constructs, what I call interpretive devices and symbolic forms.
These two constructs align, roughly, with the two informal hypotheses.
This framework has been described in detail elsewhere (Sherin, 1996, in
press), and I will describe it in more detail later in this paper. Here, I will
just introduce the two constructs briefly and informally.

1. Interpretive devices. The conjecture that programs may be interpreted
by mentally ‘running’ them constitutes an hypothesis that interpreta-
tions — the natural language utterances that one can make concerning
programs — will have a certain structure. The question then becomes:
Are there analogous structures associated with equation interpreta-
tions? And: Are there other ways that programs are interpreted? I call
these structures in interpretations interpretive devices, and the first part
of my analysis is to look at the interpretive devices associated with
equations and programming.

2. Symbolic forms. 1 will argue that students gradually learn to recognize
a certain type of structure in symbolic expressions, and that these struc-
tures are associated with elements in a basic conceptual vocabulary. It
is this association of symbol structure and meaning that I refer to as a
‘symbolic form.” Thus, in terms of symbolic forms, the second hypoth-
esis can now be rephrased as: Are there fundamental differences in the
vocabulary of symbolic forms that are associated with algebra-physics
and programming-physics?

6 BRUCE L. SHERIN

1.2. Two Practices for Introductory Physics Instruction

It is not sufficient to think of programming languages and algebraic nota-
tion as possessing properties that, in any simple sense, are solely a function
of the literal nature of expressions, as they appear on a piece of paper
or a computer display. Rather, to the extent that these representational
languages possess ‘properties’ along our dimensions of interest, these
properties will depend on exactly how the symbol systems are used. For
this study, I must therefore pick out a particular algebra-physics and a
particular programming-physics for study, and it is these practices that I
must compare.

Specifying a practice of algebra-physics for study does not pose a
significant difficulty. I will examine algebra-physics as it is practiced by
students in traditional introductory physics courses in the United States.
Because of the great uniformity that exists across such traditional courses
(which still make up most physics instruction in the U.S.), this constitutes
a relatively well-defined and uniform practice. Perhaps the most promi-
nent aspect of this practice is an emphasis on solving a class of textbook
problems that involve the use of equations to find numerical results.

For the case of programming, there is less to build on, and there
is certainly no uniformly accepted method of employing programming
languages in physics instruction. In this work, I will draw on a practice of
programming-physics that was developed by the Boxer Research Group
at U.C. Berkeley, and was implemented in 6th grade and high school
classrooms (di Sessa, 1989; Sherin et al., 1993). Unlike the problem-based
approach typical of traditional introductory physics courses, the courses
developed by the Boxer Research Group were structured largely around the
programming of computer simulations. For the purposes of this study, this
practice was transported into a laboratory setting, and it was employed with
university students who had already completed two semesters of intro-
ductory physics. The resulting practice will be described in some detail
later in the paper.

1.3. Overview of the Paper

The preceding sections have been intended to set the stage and frame the
inquiry. In what follows, I will begin by discussing prior research. Then,
in the sections that follow, my description of the present research program
can begin in earnest. In Section 3, I will describe the design of the study,
including the participants and tasks, and, in Section 4, I will introduce the
analytic framework in the context of a discussion of algebra-physics.

In Section 5, the discussion turns to programming-physics. 1 will
describe the particular practice of programming-physics employed in this

PROGRAMS AND ALGEBRAIC NOTATION 7

study and, in Section 6, I will apply the analytic framework to that practice.
In Section 7, my discussion reaches it apex, and I will draw together my
observations in the preceding sections to produce a comparison of algebra-
physics and programming-physics along the dimensions captured by the
analytic framework. Finally, in Section 8, I will discuss the implications of
this work from a broader perspective, and I will conclude the paper.

2. A BRIEF HISTORY OF PROGRAMMING-PHYSICS

The work presented here is not intended, primarily, to argue for
programming-physics as a curricular innovation. I will not describe a
particular curricular intervention in any detail, nor will I argue more
broadly for programming-physics-based instruction. Rather, my purpose
is to perform a certain kind of analysis of the understanding associated
with programming-physics. Nonetheless, it is still helpful to situate this
work within the history of programming-physics as a curricular innovation.
This is helpful because, as we will see, I am proposing that we think of
programming-physics instruction in a somewhat different manner than has
been suggested by prior researchers.

To see the roots of programming-physics instruction, we must go back
to a time prior to the use of computers in instruction. Even before the
wide appearance of computers in classrooms, some educators had realized
the value of a related technique, the use of numerical methods in physics
instruction. For example, in his Lectures on Physics, Richard Feynman
used numerical methods as a key piece of his exposition on forces and F
= ma (Feynman et al., 1963). At the heart of Feynman’s exposition is the
statement that, if we know the starting position and velocity of an object,
and if we know the forces on the object as a function of its position and
velocity — F(x,v) — then we are in a position to employ a very powerful
and general procedure for predicting the motion of an object. As long as
you know how to find the force on an object as a function of its position
and speed, you can use the expression a = £/, to find the acceleration at a
given instant, and then plug in and iterate to find the motion of the object at
each succeeding instant. The computations may be tedious, but the method
will work for every motion.

In his Lectures, Feynman went on to apply the numerical method in
gory detail for two motions, the oscillation of a mass on a spring, and the
motion of a planet around the sun. Then, following his last computation
Feynman commented:

So, as we said, we began this chapter not knowing how to calculate even the motion of a
mass on a spring. Now, armed with the tremendous power of Newton’s laws, we can not

8 BRUCE L. SHERIN

only calculate such simple motions but also, given only a machine to handle the arithmetic,
even the tremendously complex motions of the planets to as high a degree of precision as
we wish! (p. 9-9, Volume 1)

As this quote suggests, the reason that Feynman spends time on these
laborious computations is that he is trying to convey to his students
the fundamental power and generality of Newton’s theory. Nevertheless,
in Feynman’s three-volume text, numerical methods are not to be seen
outside of this one exposition. There are certainly many reasons for this,
not least of which is that Feynman probably has some commitment to
covering the material in its traditional form. However, a major factor
must also be the lack of a “machine to handle the arithmetic.” Although
computers were in use by researchers at the time of Feynman’s lectures,
they were not available in classrooms.

But computers were to appear on the scene shortly and, with them, the
possibility of realizing the benefits of numerical methods. In fact, it wasn’t
long after the publication of Feynman’s lectures that books appeared,
some directed at physics teachers, that explained how to use the teaching
of programming in physics instruction (e.g., Bork, 1967; Ehrlich, 1973).
However, as computers have become more powerful and user-friendly,
the move in physics education has been toward uses other than student
programming. By the late 1980s, applications such as pre-made simulation
environments, computer tutorials, and real-time data-collection tools had
already come to dominate. (For a broad picture of work at this time, see
Redish and Risley, 1988.)

But student programming in physics was certainly not totally aban-
doned through the 1980s and 1990s. The Logo community has continued
to be active in a number of related domains, including parts of physics (e.g.,
Wilensky, 1999). Materials are still being produced for teachers, though
they are frequently targeted for auxiliary courses in numerical techniques
(e.g., Gould and Tobochnik, 1988). And similar approaches are showing
up in alternative forms, such as in applications of spreadsheets to physics
instruction (e.g., Misner and Cooney, 1991).

A notable example is the M.U.PP.E.T. project at the University of
Maryland, which is an ambitious attempt to integrate Pascal program-
ming into the university physics curriculum (Redish and Wilson, 1993;
McDonald et al., 1988). Rather than simply supplementing the standard
curriculum with a few programming activities, Redish and colleagues
have set out to “rethink the curriculum entirely from the ground up.” One
of their main points is that limits in students’ mathematical abilities, as
well as the inherent difficulty of much of the mathematics involved in
physics, has placed many constraints on the physics curriculum. By intro-

PROGRAMS AND ALGEBRAIC NOTATION 9

ducing numerical methods implemented on a computer, many of these
constraints are loosened. As Feynman realized, the same, very general,
numerical methods can be applied to study a very wide range of phys-
ical phenomena. This allows the curriculum to be ordered in a more
‘natural’ manner, and the range of phenomena that can be studied is greatly
broadened.

Where does the current work fit in this brief history? The work I am
going to describe is unique because of its tight focus on the represen-
tational language itself. Earlier research has been very concerned with
what student programming allows. From this point of view, the primary
importance of the programming language is that it provides a means of
bringing the power of the computer into play. In this view, algebra retains
its status as the primary representational system of physics, and program-
ming plays an auxiliary role as the language we use to communicate with
computers. In contrast, I am interested in studying programming languages
as representational systems in their own right. I want to elevate program-
ming languages to the status of bona fide representational systems for
expressing physical laws and relations, and I want to study the properties
of these systems. I believe that this move constitutes the next logical step
in this history and, when we take this step, we will have moved one notch
further toward a true programming-physics.

3. TASKS, DATA CORPUS, AND ANALYTIC METHODS

For the purposes of this work, I created laboratory situations in which to
study the two practices under consideration. I chose to study students under
a laboratory situation for a number of reasons. Most importantly, I wanted
to perform the study under circumstances in which I could capture student
work as it developed on a moment-by-moment basis.

All of the subjects in this study were UC Berkeley students enrolled in
Physics 7C. Physics 7C is a third semester introductory course intended
primarily for engineering majors. The fact that these students were in
Physics 7C implies that they had already completed two semesters of
instruction, Physics 7A and 7B. Many also had some instruction during
high school.

The subjects were divided into two distinct pools, an algebra pool and
a programming pool, with each pool consisting of 5 pairs of students.
Students in the algebra pool worked with their partner at a whiteboard
to solve a pre-specified set of problems. They stood at the whiteboard
and, one-at-a-time, I handed them a sheet of paper with a problem to

10 BRUCE L. SHERIN

TABLEI

The time that algebra pool students spent in the experimental sessions

Mike & Ken Jack & Jim Mark & Roger Jon & Ella Alan & Bob Totals

of sessions 4 5 5 6 6 26
Total hours 5.0 4.5 6.0 6.0 5.5 27.0
Focus hours 2.0 1.5 2.0 3.0 2.5 11.5

solve. Then they solved the problem while I operated a video camera.
Occasionally, I interrupted for clarification.

Most of the problems that the algebra pool subjects were asked to solve
were fairly traditional textbook problems, but a few more unusual tasks
were also included. The pairs typically solved the problems in 5 1/2 hours
spread over 5 sessions. The result was a total of 27 hours of videotape of
these students using algebraic notation to solve physics problems (refer to
Table I). A subset of this data, corresponding to the work of students on
7 of the tasks, was selected for more focused analysis. (These 7 tasks are
listed in Appendix B.)

Programming pool subjects worked in pairs at computers. At any time,
a single pair of students was in the laboratory, and the students sat together
at a single computer, usually with one student typing at the keyboard
and the other operating the mouse. As compared with the algebra-physics
sessions, there was thus somewhat less of a ‘performance’ aspect to the
sessions, since the students sat facing a computer monitor, rather than
standing in front of a whiteboard. Two cameras were positioned quite close
to the students, one behind and one to the side. During the sessions, I
sat off to the side and operated the cameras, occasionally interrupting for
clarification.

The programming pool students were first given about four hours of
training, spread over 2 two-hour sessions. Following the training, the
students were asked to program a set of simulations of physical motions.
They typically required 4 additional two-hour sessions to complete these
tasks. In sum, the result was a total of 53 hours of videotape of students
programming simulations (refer to Table II). A subset of this data, 16
hours, was selected for more focused analysis. In later sections, I will
describe the nature of the programming tasks in much more detail.

One issue concerning the programming pool subjects deserves mention
here. It is of great relevance to my examination of programming-physics
that the students came to the study with experience in algebra-physics.
Because they have this experience, the results described here are almost

PROGRAMS AND ALGEBRAIC NOTATION 11

TABLE II

The time that programming pool students spent in the experimental sessions

Adam & Jerry Ned & David Amy & Clem Tim & Steve Greg & Fred Totals

of sessions 6 6 6 6 8 32
Total hours 10.5 9.0 9.5 11.0 13.0 53.0
Focus hours 3.0 3.0 2.0 3.5 4.5 16.0

certainly different than if I had studied students that were introduced to
physics solely through a programming-based practice.

The reasons for choosing to study experienced physics students in the
programming portion of the study were largely pragmatic. It would simply
have been too time consuming to create, from scratch, a population of true
programming-physics initiates. Furthermore, there are some reasons that
this approach is not too problematic. First, as I will describe below, my
analysis was always tightly focused around the external representations; I
only looked at what people said while actually looking at and pointing to
particular programming expressions. This means that my analysis is only
revealing where and how understanding gets connected to programming
expressions; it is not giving a full picture of my students’ physical intuition
or other physics-related knowledge. Of course, because these students have
significant experience in seeing structure in algebraic expressions, there is
likely still some skewing of my programming-physics results in the direc-
tion of algebra-physics. But this just means that any differences uncovered
here are likely, if anything, to underestimate the differences that would be
revealed by a study of true programming-physics initiates.

All of the videotaped sessions selected for focused analysis were care-
fully transcribed. The framework and results presented here are based on
a systematic analysis of the resulting corpus of transcripts. However, in
this paper, I will not describe the nature of this systematic analysis in any
detail. Such a description would add greatly to the length of this paper
and, I believe, it would not significantly contribute to my core arguments.
Instead, I will support my arguments by presenting a selection of examples
from the corpus, and using them to support the plausibility of my account.
(For more detail on the nature of this systematic analysis refer to Sherin,
1996; Sherin, in press.)

Here, I will just say a little more about how the analysis proceeded. The
analysis, of both parts of the data corpus, began by identifying a partic-
ular class of episodes, episodes in which symbolic expressions were used
‘with understanding.” Roughly speaking, this boiled down to two types of

12 BRUCE L. SHERIN

episodes: (1) episodes in which a student interpreted (stated the ‘meaning’
of) an expression, and (2) episodes in which a student constructed an
expression from some understanding of what they wanted to express.
These episodes were selected because, it was presumed, this would allow
me to see what type of meaning is associated with the symbolic expres-
sions in each practice, and how it gets associated. In the following sections,
I will present examples of this sort in order to support my account.

Once these episodes were identified, I iteratively viewed and reviewed
all of the transcripts corresponding to the focus tasks, and I applied the
framework to these episodes. After each of these iterations, the framework
was revised.

4. THE ANALYTIC FRAMEWORK INTRODUCED AND
APPLIED TO ALGEBRA-PHYSICS

In this section, I will undertake two goals. First, I will introduce the
framework — namely, symbolic forms and interpretive devices — in a more
concrete manner. Second, [will apply the framework to algebra-physics.
Throughout this section, my purpose will only be to describe and illustrate
the framework. I will not attempt to argue for it, or for my interpretation
of individual episodes. For arguments of that sort, the reader is referred to
Sherin (in press).

In addition, I will not discuss, in any detail, the relationship of this
framework to existing literature. To construct my analytic framework, I
have built on — and, I hope, contributed to — some prior work by mathe-
matics education researchers. For example, I have relied significantly on
research into how students understand and solve elementary word prob-
lems (e.g., Carpenter and Moser, 1983; Fuson, 1992; Reed, 1998; Riley,
Greeno and Heller, 1983) and understand mathematical equations (Kieran,
1992; Herscovics and Kieran, 1980; Sfard, 1987, 1991). In addition, I have
drawn on much work from physics education research. Most centrally,
I have built upon di Sessa’s work concerning p-prims and the sense-of-
mechanism (di Sessa, 1993). To a lesser extent, I have also drawn on
qualitative physics research (deKleer, 1984; Forbus, 1984; Hayes, 1979,
1984) and on work concerning physics problem solving (Chi et al., 1981;
Larkin, 1983; Larkin et al., 1980). A reader familiar with this prior work
may recognize these influences as my exposition proceeds, but I will not
elaborate on these connections further. Here, again, the interested reader is
referred to Sherin (in press) for more discussion.

PROGRAMS AND ALGEBRAIC NOTATION 13

Problem 4

A mass hangs from a spring attached to the ceiling. X
How does the equilibrium position of the mass
depend upon the spring constant, k, and the mass,
m?

Figure 1. Jack and Jim’s solution to the spring problem.

4.1. A First Example

It is easiest to understand the framework by grounding the discussion in
specific example episodes. As I stated briefly above, I am interested in
episodes in which a student associates ‘meaning’ with an equation. In this
first episode, I will present a simple example in which a student does just
that; he points to an equation and says what it means.

This first episode is taken from the work of a pair of students, Jack and
Jim, on Problem #4. In this problem, a mass hangs motionless at the end of
a spring. The problem, along with Jack and Jim’s solution, is reproduced
in Figure 1. Looking at this figure, we can see that, as their final result,
Jack and Jim derived the expression:

where x is the amount that the spring stretches, m is the mass, & is the spring
constant, and g is the acceleration due to gravity. After this expression
was derived, Jim spontaneously explained that this is a completely sensible
result:!

Jim: Okay, and this makes sort of sense because you figure that, as you have a more massive
block hanging from the spring, then your position x is gonna increase, which is what this
is showing. [Points to m then k.] And that if you have a stiffer spring, then your position x
is gonna decrease. [Uses fingers to indicate the gap between the mass and ceiling.] That’s
why it’s in the denominator. So, the answer makes sense.

Jim says that this expression makes sense for two reasons. First, he tells us
that the equation says that, if you increase the mass (with & held constant)
then the spring stretches farther and x increases. Second he considers the
case where the spring is made stiffer; that is, k is increased. In this case, he
says, the equation implies that x will decrease. Presumably, these observa-

14 BRUCE L. SHERIN

tions make sense to Jim because of knowledge that he has concerning the
behavior of springs.

4.1.1. Interpretive Devices Introduced

I consider the above statement by Jim to be an interpretive utterance, or,
more simply, an interpretation. Jim is not merely providing us with a literal
reading of the symbols on the page; he does not simply say “X equals M
G over K.” Rather, he tells us what the equation ‘says.” For example, one
thing that the equation says is that if you increase k then x decreases.

This is the sort of phenomena with which this research is concerned.
In the introduction to this paper, I speculated that expressions in
programming-physics could be interpreted by mentally ‘running’ them.
However, I left open the question of whether there would be analogous
interpretations in algebra-physics. In Jim’s statement above, we have found
at least one kind of algebra-physics utterance that is analogous to mental
running. With that in mind, how can we characterize Jim’s interpretation?

Even this very simple interpretation has a number of interesting charac-
teristics. In saying that as k increases x decreases, Jim is imagining a very
particular process: k is increasing rather than decreasing, and m and g are
parameters that are implicitly held fixed. Similarly, when Jim says “as you
have a more massive block,” he is imagining a process in which the mass
increases, but other parameters are held fixed.

Thus, Jim’s interpretive utterances in the above passage have a very
particular structure: he imagines that a quantity varies while other quanti-
ties are held fixed. One might now, reasonably, begin to wonder whether
all interpretations in algebra-physics have this structure. Although it turns
out that this form of interpretation is not uncommon, there were also many
other types of interpretations. As part of my analysis of the data corpus,
I looked at the interpretive utterances made by students, and put them
into categories according to structures of roughly this sort. This resulted
in a number of categories, each of which is associated with what I call an
interpretive device. An overview of the full list of interpretive devices will
be given in a later section.

CHANGING PARAMETERS | A narrative interpretation in which one quantity is varied while
others are held fixed.

In the case of interpretations like Jim’s — where one imagines that one
quantity is varied while others are held fixed — I call the associated inter-
pretive device CHANGING PARAMETERS. This interpretive device is part
of a larger class that I call Narrative devices. As a whole, I call these
devices ‘narrative’ because they often lead to interpretive utterances that

PROGRAMS AND ALGEBRAIC NOTATION 15

are like a very short story or short argument. The use of the term ‘device’
is intended to suggest that interpretive devices are like the literary devices
for the very brief stories in narrative interpretations.

4.1.2. Symbolic Forms Introduced

The preceding discussion of Jim’s interpretation leaves open a number
of essential questions. I characterized the structure of Jim’s interpretive
utterance, and I looked at what Jim said that his equation meant. But, how
did Jim know that this is the meaning of this particular equation? What
exactly are the features of the equation that he is attending to, and that tell
him what the meaning of the equation is?

The analysis associated with symbolic forms is, in part, intended
to answer these questions. According to the hypothesis associated with
symbolic forms, students learn to recognize a certain type of structure in
symbolic equations, and this supports the interpretation and construction of
equations. More specifically, each symbolic form involves an association
between two components, a symbol template and a conceptual schema.

— Symbol template. The symbol template specifies the structure of an
expression at a particular level of detail. For example, the symbol
template [J + [+ O . .. specifies an expression in which two or more
terms are separated by plus signs. Similarly, the symbol template [] =
[specifies an expression in which two sub-expressions are separated
by an equal sign.

— Conceptual schema. The conceptual schemata associated with forms
specify simple relationships among a small number of entities. These
schemata are similar in nature to di Sessa’s p-prims (1993) and
Johnson’s (1987) image schemata.

Stated informally, the conceptual schema specifies an idea, and the symbol
template specifies how to write that idea in a symbolic expression.

The symbolic forms underlying Jim’s interpretation provide some first,
relatively simple, examples. There are two symbolic forms involved here,
what I call PROPORTIONALITY PLUS (PROP+) and PROPORTIONALITY
MINUS (PROP—).

Schema Symbol template
PrOP+
One quantity varies directly with a second quantity. [’“]
PrROP—
One quantity varies inversely with a second quantity. [X]

16 BRUCE L. SHERIN

The schema for PROP+ has two entities: one quantity is seen as directly
proportional to a second quantity. In the case of Jim’s interpretation, the
position, x, is seen as directly proportional to the mass of the block.
Furthermore, the symbol template for PROP+ specifies a very simple
symbol structure; when a student sees an expression in terms of PROP+,
they are attending to the simple fact that a certain quantity appears in the
numerator. In Jim’s interpretation above, he is attending to the fact that the
mass, m, is in the numerator of the expression.

A similar analysis holds for the second part of Jim’s interpretation. In
this second part, he is seeing the expression in terms of the PROP— form.
He attends to the fact that the spring constant, £, is in the denominator, and
he concludes that the position will be indirectly proportional to k: “if you
have a stiffer spring, then your position x is gonna decrease. That’s why
it’s in the denominator.”

In the case of this particular example, the analysis in terms of symbolic
forms may seem to boil down to something very simple. Jim is able to say
“if you have a stiffer spring, then your position x is gonna decrease” simply
because he sees that a & is in the denominator. But the forms analysis is
less trivial than this example might suggest. Note that, in presenting a list
of symbolic forms — as I will do in the next sub-section — I am essentially
hypothesizing that very particular structures are meaningful to students,
and that these structures are associated with particular meanings. Thus,
when I present an exhaustive list of symbolic forms for algebra-physics, 1
will essentially be giving a complete picture of the conceptual vocabulary
supported by expressions in algebra-physics.

4.2. Devices and Forms, in Overview

The full list of the interpretive devices necessary to account for the obser-
vations in my data corpus are given in Table III. Similarly, the full list of
symbolic forms is given in Table I'V. These lists are based on the system-
atic analysis of the data corpus. For example, as part of that analysis,
I identified all of the interpretive utterances in the data corpus, and put
them into the categories that were ultimately associated with interpretive
devices. As I stated above, this was accomplished in an iterative fashion;
I made three passes through all of the transcripts, coding and recoding the
interpretive utterances and, on each iteration, the categories were refined.
One reason that I undertook this systematic analysis was to get an idea of
the frequency with which the various forms and devices appeared. Though
I may comment occasionally on the results of this frequency analysis, as
discussed above, I will not present the procedure in detail. (Again, see
Sherin, 1996 for details.)

PROGRAMS AND ALGEBRAIC NOTATION 17

TABLE III

Interpretive devices by class

Narrative Static

CHANGING PARAMETERS SPECIFIC MOMENT

PHYSICAL CHANGE GENERIC MOMENT

CHANGING SITUATION STEADY STATE
STATIC FORCES

Special case CONSERVATION

RESTRICTED VALUE ACCOUNTING

SPECIFIC VALUE
LIMITING CASE
RELATIVE VALUES

TABLE IV

Symbolic forms by cluster

Competing Terms cluster Terms are Amounts cluster
COMPETING TERMS O+0+£0... PARTS-OF-A-WHOLE [O+0+0...]
OPPOSITION O-0 BASE £ CHANGE O+ A]
BALANCING O=0 WHOLE — PART [0 — 0]
CANCELING 0o=0-0 SAME AMOUNT O=0

Dependence cluster Coefficient cluster
DEPENDENCE [..x...] COEFFICIENT [x]
NO DEPENDENCE [...] SCALING 0]
SOLE DEPENDENCE [...x...] Other

Multiplication cluster IDENTITY x=...
INTENSIVE-EXTENSIVE XXy DYING AWAY [e7%]

EXTENSIVE-EXTENSIVE XXy
Proportionality cluster

PROP+ [=X=] RATIO

RO (=] CANCELING(B) [2X]

In Table III, the interpretive devices are grouped into three classes:
Narrative, Static, and Special Case. I will just say a little about each of
these classes:

— Narrative class. Representational devices in the Narrative Class
embed an equation in an imaginary process in which some type
of changes occur. The CHANGING PARAMETERS device, which we
encountered above, is a device in this class.

18

BRUCE L. SHERIN

Static class. In contrast to Narrative devices, devices in the Static
Class project an equation into a static situation. Rather than playing a
role in a story, the equation is treated as a description or snapshot of a
single moment in a motion. In the next section, I will present example
episodes to illustrate some of these devices.

Special Case class. For interpretations based on Narrative and Static
devices, the statements made are presumed to be true for any values
of the quantities that appear in the expression. For example, when Jim
states that when m increases, x increases, this observation is assumed
to be true independent of the values of the quantities involved. In
contrast, in Special Case devices, conclusions are drawn for cases
in which the values of quantities that appear in an expression are
somehow restricted. For example, in a LIMITING CASE interpretation,
a student imagines what happen when a quantity takes on a particular
extreme value, such as zero.

The full list of symbolic forms is given in Table IV, grouped into

categories called ‘clusters.” This table is extremely important because,
in essence, it lays out the conceptual vocabulary that is supported by
expressions in algebra-physics.

Competing Terms. In forms in the Competing Terms cluster, terms in
a symbolic expression are associated with influences in competition.
These influences may be forces (in the technical sense), but they may
also be other sorts of quantities, such as momenta. I will illustrate
some of the forms in this cluster in the next section.

Dependence. The forms in this cluster have to do with whether or
not a specific individual symbol appears in an expression. Most basic
of these forms is NO DEPENDENCE, whose symbol pattern involves
the absence, rather than the presence, of symbols. In contrast, the NO
DEPENDENCE form specifies only that a given symbol appears in an
expression. I will present examples to illustrate these forms in the next
section.

Proportionality. When a physics student looks at an equation, the line
that divides the top from the bottom of a ratio is a major landmark.
Forms in the Proportionality Cluster involve the seeing of individual
symbols as either above or below this important landmark. The PROP—
and PROP+ forms, discussed above, are elements of this cluster.
Terms are Amounts. Like the forms in the Competing Terms Cluster,
these forms address expressions at the level of terms. However, rather
than describing a battle between competing influences, these expres-
sions concern the collecting of a generic substance. Each term is seen
as either contributing to or subtracting from the pool of substance.

PROGRAMS AND ALGEBRAIC NOTATION 19

— Coefficient. Forms in the coefficient cluster break a product of factors
into two parts. The first part, usually written on the left, is the
coefficient.

— Multiplication. The forms in this cluster also break down products
of factors into parts. In this case, the parts are intensive or extensive
quantities.

4.3. Further Examples from Algebra-Physics

In this section, I will present several more example episodes in order to
set up the comparison of algebra-physics and programming-physics that
will be presented later in the paper. The episodes I will present here all
involve students’ work on Problem #3, the Air Resistance problem (refer to
Appendix B). In this problem, the students are asked to consider a situation
in which a ball is dropped from a great height. Because of the force from
gravity pulling downward, the ball initially speeds up. As it goes faster,
the force of air resistance, which tends to impede the motion, grows larger.
Eventually the force from air resistance becomes large enough that it is
equal to the force from gravity. After this time, the ball’s speed remains at
a constant value that is known as the terminal velocity.

4.3.1. Associating an Equation with a Moment

As a first step toward solving the Air Resistance problem, some students
jumped directly to the time when the forces from air resistance and gravity
are equal, and terminal velocity has been reached. Mark and Roger were
one pair that began in this manner. They wrote the expression R = mg,
where R is the force from air resistance and mg is the force from gravity.
After they wrote this expression, they made some comments that I take to
be an interpretation:

R =mg

Mark: That’s when the forces are equal then, right?

Roger: Yeah, because then you wouldn’t have acceleration anymore.
Mark: Right. When the force is zero the acceleration’s zero.

Roger: Okay. I guess. Okay. After a certain time.

Mark: R equals G.

Roger: At T, some T.

Here, Mark and Roger are telling us something about this equation, but
it is something very different than Jim’s interpretation above. It does not
seem appropriate to describe Mark and Roger’s interpretation in terms of
quantities that are varied and quantities that are held fixed. Instead, they

20 BRUCE L. SHERIN

are associating the equation with a particular moment in the motion, the
moment at which terminal velocity is attained.?

SPECIFIC MOMENT | An equation is treated as a description of a particular instant.

I call the interpretive device here SPECIFIC MOMENT. In a SPECIFIC
MOMENT interpretation, an equation is essentially taken as a description of
a specific instant in the motion under study. Ella, working with her partner
Jon, also wrote an expression of this form, and gave a SPECIFIC MOMENT
interpretation.

Cv’ =mg

Ella: The terminal velocity is just when the — I guess the kind of frictional force from the
air resistance equals the gravitational force?

There is also a new symbolic form to discuss here. I believe that
students understood these initial equations, which equated the forces
of gravity and air resistance, in terms of a symbolic form that I call
BALANCING.? In the conceptual schema associated with BALANCING,
two competing influences are seen as equal and opposite. In the symbol
template, each of these influences are associated with expressions that are
separated by an equal sign.

BALANCING

Two competing influences are precisely in balance;
they are seen as equal and opposite.

4.3.2. Writing an Equation that Describes the Whole Motion

Looking at another pair of students, Mike and Karl, will allow me to illus-
trate some additional forms and devices. Unlike the above students, Mike
and Karl did not start by writing an expression to describe the situation at
terminal velocity. Instead, they began by writing a more general expression
that describes the entirety of the motion, including the time when the ball
is still speeding up. They drew the diagram shown in Figure 2, and then
they composed the following equation, talking as they wrote:

a(t) = —g+&
m

Mike: So, at least we can agree on this and we can start our problem from this scenario.
[Indicates the diagram with a sweeping gesture.] Right? Okay? So, at any time,, At any

PROGRAMS AND ALGEBRAIC NOTATION 21

f(v)= FOT

Fg

Figure 2. Mike and Karl’s air resistance diagram.

time, the acceleration due to gravity is G, and the acceleration due to the resistance force
is F of V over M. [Writes “g + f(v)/m”.]

Karl: Ah ::

Mike: Okay, now they’re opposing so it’s a minus. So, this is negative G. [Motions down-
ward, writes a negative sign in front of the g.] Positive direction. You have negative G plus
F of V over M. That’s you’re acceleration at any time. Right?

Karl: Well, wait. You want them to have.

Mike: This is the acceleration at any time T. [Writes “a(t)” next to the expression.]

In this last passage, Mike and Karl’s conceptualization of the situation
takes shape as an equation. Mike first looks at the diagram, saying that this
is the “scenario” that they will start with. Then he says that the acceleration
is due to two factors, force and air resistance, and he writes g + % Then
he notes that, because these two factors are “opposing,” there must be a
minus sign in front of the gravity term.

I believe that Mike and Karl are understanding the situation in terms
of two influences that are competing to produce a result, and they have
directly embodied this understanding in an equation. In terms of symbolic
forms, 1 say that three specific symbolic forms are involved in the
construction of this expression: COMPETING TERMS, OPPOSITION, and
IDENTITY.

COMPETING TERMS O +04...
OPPOSITION 0-0
IDENTITY x=1[..]

COMPETING TERMS. Like the BALANCING form, the COMPETING TERMS form involves
influences in competition. In this case, the two influences are gravity and air resistance,
and each of these influences is associated with one of the terms in the equation.
OPPOSITION. This is essentially a special case of COMPETING TERMS. In the OPPOSITION
form, two influences are competing in a specific manner: they are opposing. The symbol
template specifies that a minus (—) sign will appear between the two terms associated with
these influences. As Mike says: “now they’re opposing so it’s a minus.”

IDENTITY. In the IDENTITY form, a single symbol, usually written on the left, is set equal
to an expression. This is the form that allows Mike to write a(f) = on the left side of his
expression. As he writes this, he says: “This is the acceleration at any time T.”

22 BRUCE L. SHERIN

Mike and Karl’s work can also be used to illustrate a new interpretive
device. Note that, unlike the earlier BALANCING expressions, Mike and
Karl’s expression is not true only when terminal velocity is reached. As
Mike says in his interpretation, their expression gives the acceleration “at
any time;” rather than describing a particular moment, it describes any
moment in the motion. For this reason, I call the interpretive device that is
active here GENERIC MOMENT.

4.3.3. Composing an Expression for Air Resistance

Before concluding my discussion of the Air Resistance problem, I want to
discuss one final set of examples. It turns out that writing an expression for
the force due to air resistance posed a problem for the students. Although
some of the students may have seen expressions for this force earlier in
their training, none of them appeared to remember these expressions. Thus,
they were placed in the situation of having to construct (or reconstruct)
an expression for the air resistance force. In all cases, the students began
by noting that the force from air resistance must depend on velocity. For
example, Mike wrote the expression F; = f{v) and commented:

Mike: We also know that force of air resistance is a function of velocity. Right?

Then this statement was refined to say that the force should get greater as
the velocity increases.

Fair =kv

Bob: Okay, and it gets f-, it gets greater as the velocity increases because it’s hitting more
atoms of air.

There are two symbolic forms involved in the construction of these
expressions for the force of air resistance. First, when Mike and Karl write
F iy =f(v) this is due to the DEPENDENCE form.

DEPENDENCE [...x...]

The DEPENDENCE form is, in a sense, the simplest of all forms. The
symbol pattern specifies only that a particular symbol will appear, in some
manner, in an expression, and the conceptual schema specifies that one
quantity will depend on another. When Mike invoked dependence in the
above statement, he was stating simply that the symbol ‘v’ must appear
somewhere in the expression. Other students also began by announcing
this dependence:

Mark: So this has to depend on velocity. That’s all I'm saying. Your resistance — the resistor
force depends on the velocity of the object.

PROGRAMS AND ALGEBRAIC NOTATION 23

But DEPENDENCE only gets the students so far; it only tells them that
the ‘v’ must appear somewhere. In later steps, the students had to refine
their specification for this expression. Bob’s statement above does this. He
doesn’t only say that F,;,. will depend on the velocity, he says that it will
increase with increasing velocity, thus implicating the PROP+ form, which
we have encountered before.*

In addition to DEPENDENCE and PROP+, two other symbolic forms are
involved in the construction of the various expressions for the force due
to air resistance. First, the IDENTITY form, mentioned above, specifies the
overall structure of the expressions as x = [...]. And, the COEFFICIENT
form specifies that a single symbol, corresponding to a constant parameter,
will multiply the expression on the right hand side.

Finally, I want to mention that a new and important interpretive device
is involved in Bob’s statement that F,;, “gets greater as the velocity
increases.” This is a variety of Narrative interpretation; Bob is describing
what happens as one quantity changes. However, the device involved here
differs in a noteworthy respect from the CHANGING PARAMETERS device.
Notice that, in Jim’s CHANGING PARAMETERS interpretation above, the
change that he described bore no relation to any real motion. He described
a process in which the mass changed; but this is a truly imaginary process,
it does not correspond to any real motion of a physical system. In contrast,
when Bob says “it gets greater as the velocity increases,” he is talking about
what happens in the motion under consideration. I call the interpretive
device associated with this variety of interpretation PHYSICAL CHANGE.

In some cases, PHYSICAL CHANGE interpretations are more dramati-
cally framed as telling the story of a motion. For example, as part of their
solution, Alan and Bob wrote the equation ¥ F = mg — kv for the total force
on the falling object. Then Alan gave a physical change interpretation:

YXF=mg—kv

Alan: And so I guess we were just assuming that ... we would have gravity accelerating
the ball and then as, as we got a certain velocity, [points to ‘kv’] this would contribute to
making accelerating closer — de-accelerate it and so we would just have a function of G
minus K V. And then we assumed that since we know that it reaches terminal velocity, its
acceleration’s gonna be zero, we just assumed G minus K V would equal zero.

In this interpretation, Alan has wrapped the whole story of the motion
around the equation.

The existence of physical change interpretations helps to highlight
some dramatic features of the earlier interpretations that I presented. In
the introduction, I speculated that students might interpret programs by
mentally running them. Such an interpretation would essentially tell the

24 BRUCE L. SHERIN

story of the motion that is simulated, from beginning to end. We might
have expected a similar circumstance in algebra-physics; we might have
expected that all interpretations would be PHYSICAL CHANGE interpreta-
tions and would somehow tell the story of a motion around the equation.
However, what we have seen is that physical change interpretations were
only one of the types of interpretations.

5. PROGRAMMING-PHYSICS AND BOXER

5.1. A Practice of Programming-Physics

My discussion now turns to programming-physics, and I will begin by
introducing the reader to the practice of programming-physics that was
employed in this study. All student programming in this study was done in
anew and rather unique programming environment known as Boxer, which
employs its own programming language (di Sessa and Abelson, 1986; di
Sessa et al., 1991). The Boxer programming environment and language are
currently under development at U. C. Berkeley. In many respects, Boxer
can be understood to be a direct descendent of Logo, and it has been
designed with the specific aim of correcting some of the shortcomings of
Logo while maintaining many of the same goals and strengths (di Sessa,
1986).

As 1 mentioned in the introduction, the particular practice of
programming-physics that I used was adapted from work done by the
Boxer Research Group. In that research, programming was used as part
of physics courses that the Boxer Research Group designed for 6th graders
and high school students (di Sessa, 1989; Sherin et al., 1993). To illustrate
this practice, I will present a few examples from the brief curriculum given
to the college students in this study. In one of the earliest tasks given to
the students, they were simply told to “make a realistic simulation of the
motion of a ball that is dropped from someone’s hand.” In response, they
created programs like that shown in Figure 3 which was made by two
students in this study, Anne and Clem.

Figure 3 shows two types of boxes, a graphics box containing a sprite —
the sprite, in this case, is shaped like a ball — and a do-it box named drop,
which contains the program itself. Anne and Clem’s program begins by
executing a setup command, which positions the sprite at the top of the
graphics box and orients it so it is prepared to move downward. Each of
the remaining lines in the program contains a fd command followed by
the dot command. The fd command instructs the sprite to move forward
the specified number of steps, and the dot command causes the sprite to

PROGRAMS AND ALGEBRAIC NOTATION 25

|
|
I fd 1 dot
! £d 3 dot
! fd 5 dot
! fd 7 dot
: fd 9 dot
| £4 11 dot
| £d 13 dot
| fa 15 dot
| £d 17 dot
| £fd 19 dot
L] | fd 21 dot
[£fd 23 dot
[£4 25 dot
! fd 27 dot
' £fd 29 dot
|| £d 31 dot
| £d 33 dot
| £4 35 dot
| £4 37 dot
| fd 39 dot
I
I

l
|
|
{
|
t
t
!
i
i
1
i
i
1
1
1
1
1
1
|
|
|
|
|
| fd 41 dot
|

LData- R

Figure 3. Anne and Clem’s simulation of a dropped ball without variables.

draw a dot at its current location. Thus we see that this program causes the
sprite to move forward in larger and larger steps, leaving a trail of dots in
its wake.

It is important to note how this sort of program was understood by
students. All of the pairs tended to assume, at least implicitly, that each of
the movements of the sprite takes the same amount of time, an assump-
tion that was reinforced by later aspects of the curriculum. Given this
assumption, Anne and Clem’s program suggests that the ball is speeding
up.

To this point in the curriculum, Anne and Clem had only been intro-
duced to the fd and dot commands; they had not yet been told how to
use variables in Boxer, or how to create programs that iterate. Of course,
creating simulations in this manner, using only a sequence of forward
commands, would be quite tedious for students and not very illuminating.
So, after making only a few programs along the lines of Figure 3 the
students were taught to use variables and to apply them to create simula-
tions. In particular, they were taught to use a very specific structure, called
the “Tick Model”, to program their simulations.

Figure 4 shows Tim and Steve’s simulation of the dropped ball, written
using the Tick Model. Programs written with the Tick Model use three
variables, pos, vel, and acc, which correspond to the position, velocity and
acceleration of the object. Furthermore, each step in the motion is handled

26 BRUCE L. SHERIN

[B T M

. POS VEL AccC

- setup
539.000 98.000 9.800 change pos 0

- Data Data Data change vel 0

N change acc 9.8
TICK repeat 10 tick

Doit-

| |
| |
f l
1 i
| |
| |
| |
I | change vel !
| vel + acc |
! —Doit: !
1 |
| !
| 1
| 1
1 |
§ 1

change pos
pos + vel

—Doit:

fd vel
dot

Figure 4. Tim and Steve’s simulation of a dropped ball using the Tick Model.

by a procedure named tick. Each time that this procedure is executed, the
value of acc is added onto vel, vel is added onto pos, and the sprite is
told to move forward an amount equal to vel. Notice that, when the drop
procedure is rewritten to employ the tick procedure, it becomes somewhat
simpler. This new version of drop just initializes all of the variables, then it
repeats the tick procedure 10 times. Once the Tick Model was introduced,
students were directed to use it in all of their simulations.

As in this example, the goal of each task was the production of a simu-
lation of some particular motion. For example, one task in my study gave
students only the following instructions:

In this task, you must imagine that the block shown is attached to a spring so that it
oscillates back and forth across the surface of a frictionless table. Make a simulation of
this motion.

As in this example, instructions were typically very brief; they usually just
described a motion in simple terms and then asked students to create a
simulation of that motion. (Refer to the list of tasks in Appendix C.)

5.2. Tim and Steve: Simulating the Drop with Air Resistance

In this section, I want to describe a more interesting and extended program-
ming episode. This will help to further provide the reader with a feel for

PROGRAMS AND ALGEBRAIC NOTATION 27

the practice of programming-physics that is under study, and will set the
stage for later analysis.

In Task #4, Tim and Steve were asked to modify their simulation of
the dropped ball so that it included air resistance. Recall that the algebra-
physics subjects were also given a task that involved air resistance. As
part of that task, the students were faced with the need to invent their own
expressions to account for the resistive effect of the air. Most commonly,
they invented a relation for the force due to air resistance of the form F;,
= kv.

The programming task placed students in a similar predicament. Tim
and Steve knew that the force acting down was equal to mg — the force of
gravity — but, like the algebra-physics students, they did not immediately
know how to find the force of air resistance. In the following discussion,
this issue is worked out:

Tim: Anyway. Well, when you first start out there’s no air resistance. I mean there’s no —
but as you go faster the little V — little vector here starts growing. [Points to arrow at top of
diagram.] ... So we have to have the size is bigger if you’re moving faster. (.. .)

Steve: I don’t think we really have to worry about that. It just decreases.

Tim: The faster you’re moving the bigger the - so what is this. So this is — this is something
times velocity. . . .

Steve: Yeah, okay. So it’s a function of velocity, right?

Tim: Yeah.

Steve: Okay. So what should we do? Just make it like one times — point one times V or
something?

The above discussion is very similar to discussions in which the
algebra-physics students constructed equations for the force of air resist-
ance. Like their predecessors in this study, Tim and Steve came to the
conclusion that the force of air resistance should be a constant times the
velocity of the falling object. With this decided, they created a variable
named res and modified their program to compute a value for this variable,
as shown in Figure 5.

In its present state, Tim and Steve’s program computes a value for the
variable res, but this variable does not affect any other aspects of the
simulation. Thus, the students still needed to modify the tick procedure
so that the size of the air resistance would somehow be taken into account
in the acceleration. Tim and Steve were aware of this, and they knew that
they wanted a statement that began with “change acc ...” inside the tick
procedure. However, as they set out to write this line, they realized that
it wasn’t clear to them exactly where to place it among the other lines in
tick. They wondered: Should we change the acceleration before or after
changing the velocity?

28 BRUCE L. SHERIN

[P B
POS VEL ACC RES
0 0 9.8
Data Data Data Data

TICK

setup

change pos 0
change vel 0
change acc 9.8
repeat 10 tick

Doit:
change Res
vel * .1 <
Doit:
vel + acc
Doit-

change pos
pos + vel
Doit:

|
|
t
i
|
1
1
|
|
t
| | change vel
|
1
1
|
|
|
t
1
[

Figure 5. A line is added to compute air resistance.

TICK
change Res
o vel * .1
—Doit:
change acc
acc - res | <4«
Doit——

change vel

vel + acc

change pos
pos + vel

Doit:

H

fd vel
dot
—Doit:

Figure 6. A line is added to compute acceleration.

Tim: No we have to (then account) in the acceleration. So we have to change the acceler-
ation. Do we change the acceleration before we change the velocity? [Pointing into tick
box here.] Or do we change acceleration after we change velocity? Which also changes the
resistance. Oh, I'm getting confused. What’s the order in which you change things? (3.0)
You see what I’'m sayin’? They all like change each other.

Tim: So it matters which order you do it in, right?

Steve: I think the velocity’s first, right? . ..

Tim: Well you have to change resistance because you change the velocity, because (0.5)
the velocity (1.0) — the new velocity is dependent upon the acceleration which is dependent
upon the resistance. So we should change resistance, then acceleration, then velocity.
Right? Does that make sense, or am I just talking nonsense.

In the above discussion, Tim and Steve decided on a specific ordering
for the various lines that must appear in the tick procedure: res would
be changed first, then acc, then vel, then pos. They next modified tick to
reflect this decision. This required only the addition of a single new line to
compute the value of the acceleration, as shown in Figure 6.

PROGRAMS AND ALGEBRAIC NOTATION 29

[N [drepz o oo T I T T T N
o2 -
‘ ; ———1 [pos! [veL] [aec] [RES [uass]
] setup N7)
chenge pos O 450.800 || 19.600 !LF'OOOO H 98,000 || 10
change vel 0 Datg - Data«w—J Dala——~'—) Data ~——- Data ——

w0

change acc 9.8
repeat 1090 tick

|TICK

I

t

t

t

i

1

i

t | change Res , 7
! vel * SJ
! L — —
[

]

t

|

1

'

i

Dot -

change acc

—
f 1 / mass
mass * 9.8 - res |

—Doit

change vel

\
1
1
[
i
!
1
i
i
1
[
i
1
1
1
1
' .
| vel + acc [
1
1
1
1
1
1
1
i
1

i
, .
! t B
1 i | change pos |
| I pos + vel |
! : O
1 |
| i fd vel
! U] redisplay
i b1 dot
t b "

“~-Doit
\patar - — - B — = = o e e

Figure 7. Tim and Steve’s final air resistance program.

This program is nearly complete, but the line that computes the accel-
eration is problematic. In fact, with the program in its current form, the
simulation produces a striking behavior: the ball oscillates up and down. It
took quite a while for Tim and Steve to correct this problem and ultimately
get a working simulation. Eventually, they modified their acceleration line
to be:

change acc

/ mass
mass * 9.8 - res

Doit:
Doit:

If rendered in algebraic notation, this statement can be written as:

mg — F, air

q= - "ar
m

When this modification was made, the program appeared as shown
in Figure 7. Tim and Steve ran this program, and were pleased with
the results. They could tell that their program was working properly by
watching how the values of certain variables changed during the simu-
lation. In particular, they noticed that the acceleration died away to zero
and that the velocity leveled off at a constant value, thus indicating that a
constant velocity had been reached.

30 BRUCE L. SHERIN

6. THE FRAMEWORK APPLIED TO PROGRAMMING

We are now ready to begin the project of applying the form-device
framework to programming-physics. The first step will be to identify the
places where programs are constructed and interpreted much like algebraic
expressions, and to identify where construction and interpretation are very
different in programming. When this is done, we can focus our attention on
the places of divergence. In fact, I will argue that there is both substantial
overlap and interesting divergence.

To begin this discussion, I need to first take a moment to reflect on
the types of meaningful structure that we observed in algebra-physics.
Although this point was not emphasized, my description of algebra-
physics always focused on individual equations or portions of individual
equations. This implicitly presumed that, for my subjects, there were not
symbolic forms that span equations — a position that I arrived at after some
analysis of my data corpus. In contrast, I will claim that, in programming-
physics there are symbolic forms that span multiple lines of programming.
Then, what I hope to show is that it is in within-line structure that a
great overlap between programming and algebra appears. And the locus of
substantial divergence will be the line-spanning structure in programming.

The claim that there are no line-spanning symbolic forms in algebra-
physics is one which readers may find controversial. Although students
certainly do associate meaning with the arrangement of algebraic expres-
sions — and thus with line-spanning structure — this is not the same sort of
meaningful structure that is defined to be involved with symbolic forms.
Symbolic forms allow a person to conceptualize a physical circumstance
in terms of a conceptual schema, and then reflect that conceptualization in
an arrangement of symbols. In contrast, the arrangement of algebraic situ-
ations typically reflects the solution process, rather than an understanding
of the physical circumstance.

6.1. Where Programs Can Be Interpreted Like Equations

The point of the above discussion was to warn the reader that, in program-
ming, line-spanning structure is going to be important. While the entirety
of a program or procedure is rarely interpreted at once, portions of a
program containing multiple lines are often interpreted, and forms can
span these lines. However, this said, it does turn out that one of the most
common sub-units of a program that students interpret is an individual line
of programming. Furthermore, it is here that the interpretation of programs
often resembles the interpretation of algebraic expressions. There are lines
of programming that are straightforwardly related to algebraic expres-

PROGRAMS AND ALGEBRAIC NOTATION 31

sions, and these lines are constructed and interpreted in a manner very
similar to that of algebra-physics expressions. These observations are
not surprising particularly given the fact that my student subjects had
significant experience in algebra-physics upon entry in the study.

For illustration, consider Tim and Steve’s construction of a simulation
of a dropped ball with air resistance. Recall that, using their original simu-
lation of a dropped ball as a starting point, Tim and Steve began by adding
a single line to compute the value of a resistance variable:

change Res
vel * .1

Doit

Tim: The faster you’re moving the bigger the — so what is this. So this is — this is something
times velocity. . ..

The point here is that this single line of programming was constructed and
interpreted in a manner that strongly resembles the construction and inter-
pretation of similar expressions in algebra-physics. As in algebra-physics,
I believe that the construction here is based on the DEPENDENCE, PROP+,
COEFFICIENT, and IDENTITY FORMS, and on the PHYSICAL CHANGE
device.

There is actually a minor difference here between the programming and
algebra cases that bears mentioning. Notice that, in the programming case,
Tim and Steve wrote a specific numerical value for the coefficient, rather
than a symbol like ‘C’ or ‘K. This turns out to be indicative of a rather
consistent difference between programming and algebra-physics. As I will
discuss later, it was somewhat more common for the programming students
to work with specific values for quantities, rather than with those quantities
represented by letters.

It is important to note that the first argument in a change statement
must be a single variable; it cannot be an expression. For this reason, the
algebraic counterparts of statements involving the change command are
limited to expressions of the form

x=1[...],

the class of expressions that can be interpreted in terms of the IDENTITY
form. Notably absent from this class of expressions are many that would
often be interpreted in terms of BALANCING, such as those that state the
equality of forces. This is not to say that we could not devise a means of
working expressions of this sort into simulation programs. I will say more
about this when I compare programming-physics and algebra-physics.

32 BRUCE L. SHERIN

6.2. The Interpretive Devices of Programming-Physics

Now I want to discuss how the understanding of programs differs from
the understanding of equations. To begin, I return to Tim and Steve’s work
on the Air Resistance task. After they had produced and tested their final
simulation, shown in Figure 7, I asked Tim and Steve to explain why their
simulation reaches a terminal velocity. Tim explained as follows, pointing
to two statements within the simulation:

change Res
vel * §

~~Doi

change acc

/ mass
mass * 9.8 - res

Do e

—Doit

Tim: Well it reaches terminal velocity when the resistance is

equal to the weight. And, the weight’s constant. ... Tim: Well, basically, as this — this
[points to first line] eventually gets close to this number [points to mass*9.8] and the
difference [points to mass*9.8 — res] becomes next to nothing. And once that happens
there’s no more change in velocity. Velocity becomes constant.

Tim: Well, whatever force vector’s going down, that um, cause it to, um, (3.0) accelerate.
And, as you - when you accelerate, the resistance gets bigger. So, it kinda like — so, every
time you accelerate a little more, the resistance gets a little bigger. So eventually, um, this
grows and this grows and eventually it’ll reach a point where they’re equal.

What Tim is saying here is that, as the velocity increases, the value of
the Res variable will increase until it equals the value of mass*9.8. At
that moment the expression in the second line becomes zero and terminal
velocity has been reached.

There are two important points to be made about this passage. The first
point is that, although it involves multiple lines, it is really quite similar
to the PHYSICAL CHANGE interpretations we encountered in algebra-
physics. As in those interpretations, Tim looks at a symbolic display and
talks through how the variables in that display vary through the time of the
motion. A second point to be made about Tim’s interpretation is that, if his
interpretation is at all representative, then understanding a program may
mean focusing on only a small portion of the program.

6.2.1. A New Narrative Device: Tracing

I have just taken pains to argue that not all algebra-physics interpreta-
tions involve mentally stepping through a program — what has sometimes
been called “mental simulation” (e.g., Letovsky et al., 1987). However,
there is one representational device that can reasonably be considered
to be a variety of mental running. Interpretations based on this new

PROGRAMS AND ALGEBRAIC NOTATION 33

TICK

change vel

vel + acc
—Doit

change pos
pos + vel
—Doit

change force

pos * k
Doit

change acc
force / mass

—Doit
fd vel
dot

—Doit

Figure 8. Ned and Dave’s tick procedure for the Spring simulation.

Narrative device, which I call TRACING, take their narrative flow from the
line-by-line structure of a program.

For a first example of a TRACING interpretation, I turn to an episode
involving the work of Adam and Jerry on the Spring simulation. In this
task, the students are asked to produce a simulation of a mass that oscillates
horizontally on a spring. Early in their work on this task, when they were
operating in a somewhat experimental mode, Adam and Jerry produced a
simulation that did not make use of the Tick Model structure:

repeat 50
change pos 50

dot

change pos 0
dot

change pos -50
dot

Doit-

Their idea, in writing this short program, was to simulate an oscillation by
sequentially placing the block at three positions: +50, 0, and then —50. If
this was done repeatedly, then the block would appear to oscillate, albeit
in a somewhat jumpy and discontinuous manner. After this program was
written, Adam checked that he had something sensible by tracing through
what they had written:

Adam: Make a dot right there. Change to fifty. Make a dot. [Points to the right of center in
the graphics box.] Go back to here make a dot. [Points to center of graphics box.] Go here,
make a dot. [Points to left of graphics box.] And repeat.

In this interpretation, Adam steps through the program one line at a time.
As he does, he points into the graphics box on the display, moving his
hand as the block would move for each statement. This is a TRACING
interpretation, a narrative interpretation that follows the timeline structure
of the written program.

34 BRUCE L. SHERIN

To further clarify the nature of TRACING, it helps to distinguish it from
PHYSICAL CHANGE, since both of these devices involve a description of
a phenomenon that follows through the time of the motion. The difference
enters in how these descriptions are related to the written expressions.
In the case of PHYSICAL CHANGE, one or two lines in the program
are selected, and then the interpretation describes how quantities in the
expression vary through time. In contrast, rather than focusing on how the
quantities in selected lines vary through time, a TRACING interpretation
proceeds, line-by-line, through a program. Compare Tim’s interpretation
of the Air Resistance program described just above. The action in that
interpretation concerns how the value of the res variable changes through
time, with attention focused on two statements. But the action in Adam’s
TRACING interpretation flows from line to line in the procedure.

Interestingly, stepping through the lines of a program will not, in all
cases, correspond to stepping through the time of the motion. For illustra-
tion, consider Ned and David’s interpretation of the tick procedure shown
in Figure 8, which has been modified for the Spring simulation:

David: See, cause if we start off with zero acceleration, velocity would be velocity. And
it’ll go once. Position’ll be position plus velocity. Force would — (0.5) position times K.
And then acceleration’d be force divided by mass. And then, it’ll use that acc, right, the
next time around?

In this passage, David proceeds through the lines in tick under the assump-
tion that the acceleration is zero. The point about this interpretation is that,
although it follows the lines in the program, it is not precisely correct
to think about the sequence of operations as happening through time. In
the physical system that this simulation purports to model, all of these
parameters are constantly changing; they do not change one at a time as
in this program. In essence, the act of programming requires the students
to explode each instant of the motion into a series of actions that happen
through what I will refer to as “pseudo-time” (deKleer and Brown, 1984).

6.3. The Symbolic Forms of Programming-Physics

In this section, I will look at how the symbolic forms of programming-
physics differ from those of algebra-physics. For the most part, the new
forms in programming-physics involve a sensitivity to line-spanning struc-
turing in programming. First I will describe a new cluster of forms, the
Process Cluster. Then I will describe one additional form that did not
appear in algebra-physics, SERIAL DEPENDENCE, which is an important
line-spanning addition to the Dependence cluster.

PROGRAMS AND ALGEBRAIC NOTATION 35

toss drop

setup Lﬁhange acc -9.8

change pos 0 repeat 10 tick
change vel 98 Doit

change acc -9.8
repeat 10 tick
drop

Doit:

Figure 9. Tim and Steve’s first working Toss simulation.

6.3.1. A New Cluster: The ‘Process Cluster’

When programs are being constructed, programming requires that the
statements be arranged in a sequence. For the most part, I will account
for the ability of students to produce novel arrangements of statements
by positing a new cluster of forms that I call the ‘Process Cluster.” To
introduce the forms in this new cluster, I want to discuss how Tim and
Steve adapted their simulation of a dropped ball for Task #3, which asks
them to simulate a motion in which a ball is tossed straight upward and
then falls back down. Tim and Steve’s first working version of this new
simulation appeared as shown in Figure 9.

Execution of this program starts in the box named toss. Toss begins by
executing setup to position the ball at its starting point and orient it facing
upward. Then each of the three variables are initialized and tick is repeated
10 times, taking the ball up to the apex of its motion. Following the repeat
statement, there is a single line that calls a procedure named drop, which
takes the ball from its apex back down to the bottom of its motion.

One thing that needs explaining here is how Tim and Steve knew
to order the lines in toss. To begin, notice that the first five lines of
this procedure, from setup to the repeat statement, are in line with the
initialize-and-then-repeat structure, which we encountered above. Just
as this structure is familiar to readers, it was also familiar to Tim and
Steve; they had already seen several examples and created a few programs
following this structure. Thus, I believe that it is reasonable to hypothesize
that the sequence of statements

setup
initialize variables
repeat ## tick
is a structure that Tim and Steve essentially remember; it is part of a

known repertoire of program structures. (I will have more to say about
this structure in a moment.)

36 BRUCE L. SHERIN

toss

setup

change pos 0
change vel 98
change acc -9.8
repeat 10 tick

Ball goes up.

drop | IBaII comes down.

Doit

Figure 10. Tim and Steve’s Toss procedure broken into two parts.

But in appending a call to drop at the bottom of the toss procedure, Tim
and Steve are departing from the initialize-and-then-repeat structure. How
did Tim and Steve know to write this particular line in this location? To an
experienced programmer, this may seem like an almost trivial move, hardly
worthy of an explanation. But, I hope to show that working to describe
the knowledge involved here actually extracts some of the most important
differences between algebra-physics and programming-physics.

The key to the explanation here is to note that, in writing the program
in this manner, Tim and Steve have broken the motion into two parts, the
upward motion to the apex and the downward motion. With this in mind,
the toss procedure can be understood as consisting of two sequenced parts
that correspond to these two portions of the motion. This is illustrated in
Figure 10.

When a procedure is seen in this manner, as consisting of two or
more sequential pieces that correspond to segments of a motion, I say
that the SEQUENTIAL PROCESSES form is active. The entities in the
conceptual schema associated with SEQUENTIAL PROCESSES are two or
more processes, and the relationship that holds among these processes is
simply that they are ordered. Furthermore, the associated symbol pattern
is:

[...]
SEQUENTIAL PROCESSES [...]

[...]

In this notation, “[...]” stands for a single programming statement or a
group of statements.

Notice that, except for ordering, SEQUENTIAL PROCESSES treats all of
the processes involved as equivalent. As far as the schematization associ-
ated with this form is concerned, none of the processes plays a special role.
In contrast, we can imagine that it would be possible to develop standard
ways of breaking a motion into sub-processes in which the sub-processes
are non-equivalent.

PROGRAMS AND ALGEBRAIC NOTATION 37

drop2

setup

change pos 0
change vel 0 Setup
change acc 9.8

repeat 10 tick-_l Loop

Doit

Figure 11. The setup-loop structure in Tim and Steve’s drop simulation.

One such breakdown, associated with the initialize-repeat structure, is
what I call the SETUP-LOOP form. In SETUP-LOOP, the program is seen as
decomposed into a portion that gets everything ready for the motion — for
example, positioning the sprite and initializing variables — followed by a
repeat statement that repeatedly executes a procedure that specifies what
transpires at each moment of the motion. To take a simple example, Tim
and Steve’s drop simulation can be seen in terms of setup-loop (refer to
Figure 11). Note that, since SETUP-LOOP breaks down a motion into sub-
processes associated with program parts, it may be thought of as a special
case of SEQUENTIAL PROCESSES.

Before concluding this section, I want to briefly connect to some closely
related work. Other researchers have argued that programming knowledge
includes what have been called “templates” (Linn et al., 1987; Mann, 1991)
or “plans” (Ehrlich and Soloway, 1984; Soloway, 1986). These templates
are schematic structures — like the ones I have been describing — that
constrain, at certain levels, the programs that experts and students write.
In the template literature, it is usually emphasized that templates can exist
at many levels; they can exist at the level of individual programming
statements, or closer to the level of entire programs. My position here is
that, at least to a first approximation, it is reasonable to view the Process
forms — and perhaps programming forms, in general — as a particular sub-
category of template. The templates in this sub-category specify programs
at a certain level, and have a certain degree of specificity; they have only a
small number of components, each of which is quite generic.

There is another way to understand the special characteristics of this
sub-category of template. In the templates literature, it is often empha-
sized that templates are associated with goals or functions. In my account
of forms, the story of use is somewhat different. When constructing a
program, a form is activated because of the meaning of the construct
— the associated conceptual schema. Thus, Process forms are a partic-
ular sub-category of template that correspond to a conceptualization of
a process, and thus allow the generative construction of simulations out of
meaningful components.

38 BRUCE L. SHERIN

change b a.
change c .b..
change d e

Figure 12. The serial dependence symbol pattern.

6.3.2. A New Dependence Form: Serial Dependence

In programming-physics, the notion of dependence gets extended in an
interesting way. When writing simulations, students were often concerned
with chains of dependent quantities, such as d depends on ¢, which
depends on b, which depends on a. Within a program, these chains show
up as the symbol pattern shown in Figure 12. In this programming symbol
pattern, b is computed from a, ¢ is computed from b, d is computed from c,
etc. This sequencing of linked dependence relations, which students wrote
into and read out of programs, is the meaningful pattern I call SERIAL
DEPENDENCE.

We already encountered an episode involving SERIAL DEPENDENCE
above, when I gave an extended description of Tim and Steve’s work on
the Air Resistance simulation. Recall that, in that episode, Tim raised the
issue of how the lines in their modified tick procedure should be ordered.
With their tick procedure as shown in Figure 6, Tim commented:

Tim: No we have to (then account) in the acceleration. So we have to change the accel-
eration. Do we change the acceleration before we change the velocity? [Pointing into
tick box here.] Or do we change acceleration after we change velocity? Which also
changes the resistance. Oh, I'm getting confused. What’s the order in which you change
things?

Tim: Well you have to change resistance because you change the velocity, because (0.5)
the velocity (1.0) — the new velocity is dependent upon the acceleration which is dependent
upon the resistance. So we should change resistance, then acceleration, then velocity.
Right? Does that make sense, or am I just talking nonsense.

The question that Tim and Steve were wrestling with was, given that a
number of quantities must be computed in the tick procedure, “What’s
the order in which you change things?” In answering this question, they
decided to compute res (a quantity associated with the air resistance)
from the current value of the velocity. Then they got an acceleration
from this value of res, and finally a new velocity and position from the
acceleration.

PROGRAMS AND ALGEBRAIC NOTATION 39

TICK

change vel

vel + acc
—Doit

change pos
pos + vel

—Doit
* k
-1 * pos
Doit

change force
Doit

change acc
force / mass

Doit

fd vel
dot
—Doit

Figure 13. Ned and David’s tick procedure for the Spring simulation.

TICK

change force

* pos
Doit

change acc
force / mass

“—Doit:

change vel
vel + acc

'—Doit;

change pos

pos + vel

£d vel Dot

dot
—Doit:

Figure 14. Adam and Jerry’s tick procedure for the Spring simulation.

Tim’s assertion is that this ordering somehow actually reflects the struc-
ture of dependence in this situation, “the new velocity is dependent upon
the acceleration which is dependent upon the resistance.” Of course, he
does not provide much of an argument for this view in the above passage.
Nevertheless, this ordering does turn out to be in agreement with one
important way of conceptualizing the structure of Newtonian physics: Find
the force using a ‘“force law’ and then use F = ma to find the acceleration.
I will have more to say about this below.

SERIAL DEPENDENCE issues arose frequently during student work on
the Air Resistance simulation, as in Tim and Steve’s discussion above, and
also in the context of the Spring simulation. Ned and David’s brief discus-
sion below is another example. In this example, Ned and David decide on
a particular dependence structure: the position determines the force which
determines the acceleration. (Refer to Figure 13.)

40 BRUCE L. SHERIN

Ned: Does the force change because the acceleration changes?
David: The force changes ‘cause X changes. And so that, and so =
Ned: = That causes acceleration to change.

Similarly, the question of which quantities should determine which others
played a central role in Adam and Jerry’s work on the Spring simulation.
Throughout their work, Adam strongly argued that the position was at the
root of the dependence structure:

Adam: Well basically, the position is, um, the acceleration, everything, is based on where
this is, the position.

Adam: And the position is the most important thing here. If we made it the other way
around, we don’t care about the acceleration, we care about where it is. See acceleration
derives from the position.

Adam: That’s the best way. It’s easier just to think about it as position affecting
acceleration. Than acceleration affecting position.

In accordance with this viewpoint, Adam and Jerry settled on the version of
the tick procedure shown in Figure 14. In this and the preceding passages,
the students were engaged with a quite unusual set of issues. The question
under consideration — which quantities determine which others — is not a
question that arises very often in algebra-physics. In fact, such a question
may not even make sense within algebra-physics.

7. COMPARISON OF PROGRAMMIMG-PHYSICS AND
ALGEBRA-PHYSICS

My discussion has now reached its apex. I have presented an analysis of
both algebra-physics and programming-physics in terms of interpretive
devices and symbolic forms. In this section, I will now draw on those
analyses in order to compare the two practices. I will present, first, a
comparison based on interpretive devices, followed by a comparison based
on symbolic forms.

7.1. Comparison Based in Interpretive Devices

Recall that I began by asking whether programs would be easier to under-
stand than equations. With the introduction of my framework, this informal
question can now be refined. We can ask: How does interpretation differ in
programming-physics versus algebra-physics? Is there any sense in which
the interpretive devices in one practice are easier to execute or easier to
learn? We have already seen that the comparisons implied in these ques-
tions are not going to be simple and straightforward. It is not the case that

PROGRAMS AND ALGEBRAIC NOTATION 41

only programs are interpreted; we saw that equations are also interpreted
by students, and often in a manner that is similar to the way that programs
are interpreted. Nonetheless, I believe that there are still some important
differences to be drawn out.

7.1.1. A Shift to Time-Varying or ‘Physical’ Devices

In my initial hypotheses, I postulated that programs would be easier to
understand because they can be mentally run. In my more formal analysis,
the mental running of programs was captured by a particular interpretive
device, TRACING, that only shows up in programming-physics. The exist-
ence of this device that is particular to algebra-physics constitutes one
obvious difference between programming-physics and algebra-physics.
However, the importance of this difference is not immediately clear.
TRACING is only one of a number of narrative devices, and all of the
other narrative devices show up in algebra-physics. Thus, the existence
of one additional narrative device in programming-physics might not be
very important.

To further explore this issue, recall how the various devices in the
Narrative cluster differ. In PHYSICAL CHANGE, the narrated changes
follow the motion under study. For example, if we are examining a ball
falling under the influence of air resistance, then we might narrate how
the velocity and the air resistance force change as the ball drops. In
contrast, a CHANGING PARAMETERS interpretation describes changes that
could be understood to be occurring across instances of a motion. For
example, again considering the case of a ball dropped with air resistance,
a CHANGING PARAMETERS interpretation might describe how the motion
would differ if the ball was heavier. Given these descriptions of the three
Narrative devices of algebra-physics, we can see that there is a sense
in which TRACING and PHYSICAL CHANGE go together: both of these
devices involve changes through the time (or pseudo-time) of the motion
under study.

With this in mind, I want to introduce an observation drawn from the
systematic analysis in Sherin (1996). It turns out that TRACING and PHYS-
ICAL CHANGE interpretations are both common in programming-physics
and that, together, they constitute a large percentage of all interpretive
utterances. In contrast, PHYSICAL CHANGE interpretations are relatively
uncommon in algebra-physics (and, of course, there are no TRACING inter-
pretations). Thus, what we are seeing here is a general shift toward what I
call ‘physical’ narratives — narratives that follow the motion under study.
This is an important observation, and it suggests a general difference in
how programming expressions tend to be understood. As we will see, this

42 BRUCE L. SHERIN

is not too surprising given an overall learning toward static situations in
algebra-physics.

7.1.2. Programming and Embedding in Particulars

In this sub-section, I want to draw out a difference that has not been
well-captured by previous parts of my discussion. Note that, in algebra-
physics, it is possible to use equations to solve problems in which the
physical situation is only weakly specified. For example, in the Mass on
a Spring task that I gave to my algebra subjects, the students were asked
to determine how the amount of stretch depends on the mass of the object
and the spring constant. However, they were not given any specific values
for these parameters. Instead, they simply derived the equation x = "8/, and
then discussed the properties of this expression. In this way, they were able
to answer the question without specifying the numerical particulars of the
physical situation.

Furthermore, you can use algebraic expressions in a manner that is
farther removed from even sketchily described physical circumstances. For
example, it is possible to use Maxwell’s equations (a set of very general
relations that describe phenomena relating to electricity and magnetism) to
derive the fact that waves can propagate in electric and magnetic fields. In
that case, we are deriving a very general feature of electric and magnetic
phenomena; we do not need to be talking about any particular physical
circumstance.

In contrast, programming-physics — at least the practice used in this
study — requires one to embed statements in particulars. For example, when
creating their Spring simulations, the students in my study were forced to
invent numerical values for all of the parameters that appeared in their
programs. If they did not invent these numerical values, then they could
not run their programs. In fact, partly for this reason, I saw that Special
Case interpretations were more common in programming (Sherin, 1996).
Because programming already requires you to deal with equations in a
particular numerical regime, Special Case interpretations may be more
natural.

There is still more to this beyond the fact that programming requires
you to pick specific values. When you write a statement in program-
ming, that statement must be embedded within a program, and it must
be embedded in a specific manner. You cannot have the programming
statement change acc force/mass written just anywhere on the computer
display, it must be embedded within a program, doing a particular job.
The point here is that the existence of these particulars in programs might
make interpretation easier. For example, because individual statements are

PROGRAMS AND ALGEBRAIC NOTATION 43

embedded within programs, this may help to suggest that the statement be
interpreted in a particular manner. I will say more about this below.

7.1.3. Are Programs Easier to Interpret than Equations?

Are programs really easier to interpret than equations? Given the obser-
vations I have presented, there are reasons to conclude that programs are
easier to interpret, and reasons to conclude that they are trickier to inter-
pret. To begin, we must keep in mind that the interpretation of programs
was not always very different than the interpretation of algebraic expres-
sions. In many cases, individual programming statements and collections
of statements were interpreted much like their algebraic counterparts,
with the rest of the program fading into the background. This observa-
tion seems to suggest that programs are no easier to interpret, and maybe
even a little harder, since the lines to interpret in a program must first be
selected.

However, on the other side of this debate is the observation that the
backdrop provided by the rest of a program and the programming context
may help by providing an orientation to the lines that are focused on.
This is essentially the point I made just above. The fact that programming
statements are always embedded within a program in a particular manner
provides a leg-up on interpreting those statements. Less has to be done to
invent a stance, at least once the program is written, since the interpretation
is already partly suggested by the role that the statement plays within the
program.

This observation is actually a corollary of a more fundamental point.
In general, interpreting any specific symbolic expression will be easier
when there is more support lying around in the context, and a person thus
has to do less to invent an interpretive framing. Furthermore, this is true
not only of individual expressions, but also of classes of expressions: Any
class of symbolic expressions will be easier to interpret to the extent that
it is embedded in practices that provide natural modes of interpretation.
Yet another way to say this is to state that, to some extent, the ease of
interpretation of symbolic expressions depends on the existence of natur-
ally available and useful interpretive devices. And there actually is some
evidence that programming has an edge in this regard. The fact that the
interpretation of a programming statement can be framed by the running
program is an example of this sort of natural support. Because of the fact
that programs can be run, there is a naturally available representational
device — the TRACING device.

In conclusion, there are points on both sides of this debate. In some
respects the interpretation of programs is not altogether different than the

44 BRUCE L. SHERIN

interpretation of equations, and some cleverness is required in selecting
lines and pushing other lines into the background. However, because
programming statements are embedded in particulars there is more support
for interpretation. Furthermore, there are some naturally available and very
powerful interpretive devices that simulation programmers can fall back on
in interpreting programs.

7.2. Comparison Based in Symbolic Forms

7.2.1. Unbalanced BALANCING

My comparison of programming-physics and algebra-physics now turns
to the symbolic forms associated with each practice. It is profitable to
begin this discussion with a consideration of the BALANCING form. In
contrast to a relative prevalence in algebra-physics, I never encountered
the BALANCING form in my analysis of the programming corpus. In part,
this must have to do with the specific nature of the tasks I selected, and with
some details of the particular practice of programming-physics I designed
for this study.

However, I believe that this observation also points to some real funda-
mental differences between the two practices and their associated symbolic
languages. In particular, situations involving BALANCING turn out to be
somewhat easier to deal with in algebra-physics than situations that do not
involve BALANCING. For example, when we have balanced forces, then we
can just set the two forces equal and solve, in the process avoiding differ-
ential equations. Because of the simplification that results, the practice of
algebra-physics tends to seek out situations that can be understood in terms
of BALANCING. In contrast, BALANCING situations are not especially
easy or natural in programming-physics. Thus, we see a possible strong
effect, rooted in the representational languages, in the type of meaningful
structures we seek out in the physical world.

I do not mean to imply that the use of algebra constrains physics to
the study of unimportant phenomena. In fact, there is reason for us to have
special interest in static phenomena — cases in which all objects in a system
are at rest relative to each other. For example, these cases happen to be
very important to engineers and architects, who need to design buildings
and bridges that do not move (i.e., that do not fall over).

The situation in programming is quite different. To begin, notice that
there is no way to write symmetric BALANCING relations like F = F»,
at least within the practice of programming-physics that I employed in
my study. In particular, the programming statement change F1 F2 is not
equivalent to F) = F,. Rather than stating a symmetric constraint, this

PROGRAMS AND ALGEBRAIC NOTATION 45

programming statement specifies a directed action: Assign the value in F2
to the variable F1. We could attempt to modify our practices so that such
differences in tendencies were moderated. For example, we could expand
our practice of programming-physics to include ‘conditional’ statements,
such as:

£
Lforcel = force2 Ldo—something
D

Doit

olt

This statement says to execute the procedure named do-something if
the variable forcel happens to equal the variable force2. If we allowed
these conditional statements in our practice of programming, there would
be a niche for symmetric equality relations that might lend themselves to
BALANCING interpretations.

However, I believe that even in modified practices of this sort, BALANC-
ING will still play a less prominent role than it does in algebra-physics.
This is true, if for no other reason, because we can deal with time-varying
situations so easily. There is simply no reason to lean as heavily on cases
in which influences happen to balance.

7.2.2. Ordering and Processes

In my original informal hypotheses, I conjectured that there would be
important differences between programming and algebra traceable to the
fact that the lines in programs are strongly ordered. In part, the effects of
this strong ordering are reflected in the existence of the Process Cluster, a
whole new cluster of forms that are unique to programming-physics. The
existence of this new cluster is extremely important; as I will argue, it
suggests that a whole new wing of intuitive knowledge is picked up and
strongly supported by programming.

The points here are so important that I want to support them with a
careful discussion of an example episode. This episode involves Tim and
Steve’s work on the Toss simulation, which we briefly encountered above.
Here I want to go through this episode in some detail, telling the whole
story so that I can extract the relevant morals.

Upon starting work on the Toss, Tim and Steve commented that the
second portion of the motion, during which the ball drops from its apex
to the ground, would be the same as the motion produced by their Drop
simulation, which they had just completed. This led Tim and Steve to
copy their work from the Drop simulation and past it into their current
working environment. Then they worked to fill out the toss procedure
and adapt drop to be appropriate for its current use. The result was the
program shown in Figure 15. Recall that, above, I argued that the sequen-

46 BRUCE L. SHERIN

toss drop

setup change acc 9.8
change pos 0 repeat 10 tick
change vel 98 Doit

change acc -9.8
repeat 10 tick
drop

Doit-

Figure 15. First version of Toss simulation.

toss drop

setup change acc -9.8 4&€———
change pos 0 repeat 10 tick

change vel 98 Doit-

change acc -9.8
repeat 10 tick
drop

Doit-

Figure 16. Toss simulation with modified acceleration line.

tial processes form was involved in Tim and Steve’s construction of this
toss procedure. The story I told there was that these students saw the simu-
lation as broken into two parts, a part that takes the ball up and then a call
to drop, which is supposed to take the ball down (refer to Figure 10).

When Tim and Steve executed this simulation, the sprite began by
moving upward in the graphics box, slowing down along the way. This
part was as expected. But after the sprite stopped at its apex, it began to
move upward again, accelerating off the top of the graphics box. Looking
at the graphical display, it was obvious to the students that something was
amiss:

Steve: Oh, shoot.
Tim: What happened?
Steve: It kept going the same way.

The reason for this incorrect behavior is the change in the sign of acc at the
apex of the motion. To explain: The ball/sprite starts off at the bottom of
the graphics box, pointing upward. This means that the downward direc-
tion is essentially defined to be negative. Thus, when the program starts,
the ball’s initially positive velocity causes it to move upward, and the
initially negative acceleration decreases this velocity, making the velocity
smaller and smaller until it is zero at the apex. At this point, for the ball
to come down, we would need the velocity to become negative so that the
ball moves in the negative direction. This requires that the acceleration
continue to be negative. If the acceleration is changed to have a positive
value at this point, as in Tim and Steve’s simulation, this makes the velocity
become positive again, and the ball continues upward.

PROGRAMS AND ALGEBRAIC NOTATION 47

toss

setup

change pos 0
change vel 98
change acc -9.8
repeat 19 tick
Doit:

Figure 17. Final version of the toss simulation.

Without making any comments whatsoever, Tim and Steve immedi-
ately modified their drop procedure so that it made the acceleration —9.8,
instead of 9.8. Thus, their program looked as shown in Figure 16. This
program, when run, produced behavior that was essentially correct and
Tim and Steve were largely satisfied. However, notice that, because the
change statement in drop now changes the acceleration variable to —9.8
— the value it already contains — this statement has no effect and can be
safely deleted. Furthermore, when this statement is eliminated, the above
program essentially contains two sequential repeat statements, both of
which repeatedly execute the same tick procedure. These two statements
can thus be combined into a single longer repeat statement. Tim and Steve
recognized these points soon after completing their successful simulation:

Steve: So we don’t even need to have that change, huh? [Points to change acc line in drop.]
Tim: That can’t be right.

Steve: Cause it’s still the same.

Tim: Then why does it go back down?

Steve: I don’t know.

Tim: Oh, cause we have an initial velocity right. It starts out positive, it just keeps getting
more and more negative.

Steve: Oh. So you could just repeat that nineteen times. [Points to repeat line in toss.]
Tim: Yeah.

After this exchange, Tim and Steve acted on these observations to produce
the final version of the simulation, shown in Figure 17, which generates
identical behavior to their previous simulation. After confirming that this
new version of the simulation worked, Tim commented:

Tim: We don’t need this. [Points to drop procedure.] That’s right, cause gravity’s constant.

Now I want to take some time to reflect on what happened in the above
episode. Initially, Tim and Steve had a program that broke the motion into
two parts, a part that takes the ball up to the apex and a part that takes the
ball back down. Then this program was transformed into a new version that
treated the motion as a single whole. These two views of a toss are really
quite dramatically different, but is there a sense in which either version is
preferable? Have Tim and Steve learned anything important here?

48 BRUCE L. SHERIN

To begin to answer these questions, let us first look at these issues from
the point of view of a physicist. Note that, throughout the motion, the
only force acting on the ball is the force of gravity, F, = mg. This force
can be used to compute the acceleration of the ball at any time using the
relation F' = ma. Thus, there is a deep sense in which the motion is the
same at every point, and it is not ‘physically natural’ to break the motion
into two parts. This does not mean that it is incorrect to talk about the
motion as having two parts; there may very well be occasions in which
this point of view is helpful and illuminating. However, if a student does
learn to see the toss motion as a single whole, then they may be on the
way to learning something profound. The power and subtlety of the formal
physics approach here is that it reveals a common, underlying mechanism
that generates the entire motion.

Now let’s think about where Tim and Steve stand with respect to these
issues. Initially, it was not obvious to them that the toss motion could
be treated as a single uniform process. This may seem a bit surprising,
given the fact that Tim and Steve have almost certainly received direct
and fairly extensive instruction relating to this issue. That Tim and Steve
have received such instruction is somewhat confirmed by Tim’s final state-
ment: “That’s right, cause gravity’s constant.” Nonetheless, in their first
pass at this simulation, Tim and Steve thought that they needed to alter the
sign of the acceleration at the apex. Did they just forget or was there still
some lingering sense in which they didn’t really ‘get it’? Referring to the
research literature, there is substantial corroborating evidence that many
physics students cannot give accounts of a toss in which the upward and
downward motions are treated equivalently. This asymmetry is apparent,
for example, in both McCloskey’s (1984) and di Sessa’s (1993) accounts
of student’s explanations of tossed objects.

The point here is that programming forces a student to engage with
these issues in a way that algebra-physics does not. The question of how
and whether to slice up the motion has clear and direct implications for
the program; you have to decide whether to have one loop or two. In
algebra-physics, as it is usually practiced, the relevant differences are not
so clearly manifested as differences in the external representation. Given
this observation, it is not too surprising that algebra-physics instruction
leaves some undiscovered intuitive cobwebs in this territory, and that the
act of programming tends to expose these cobwebs.

Tim and Steve’s work on the Toss simulation was not at all anom-
alous. In fact, three of the four other pairs explicitly discussed the issue
of whether the simulation should involve one or two loops. Furthermore,
nearly the same issue, in one form or another, arose for all pairs while

PROGRAMS AND ALGEBRAIC NOTATION 49

working on the Spring simulation. As for the Toss simulation, a single
tick procedure and repeat loop can be used to generate the entirety of the
Spring simulation. But this was far from obvious for the students in my
study; pairs frequently discussed various ways of breaking an oscillation
into parts. Then, as their work proceeded, they progressed to a solution in
which the entire motion was generated by a single repeat loop.

7.2.3. Directedness and Causation

Another element of my original hypotheses was that the directed aspect of
programming statements would lead to a greater role for causal intuitions
in programming. Since there is no symbolic form that I labeled the ‘cause’
form, the connection of causal intuitions to my analysis is not immediately
obvious. Among the forms that I identified, the ones that I believe are
most closely related to causal relations are the Dependence forms. A little
explanation is required here to make this relationship between dependence
and causation clear.

First note that causal relations are asymmetric in the sense that when
I say that X causes Y, this is not equivalent to saying that Y causes X.
Furthermore, there is a family of relations that are asymmetric in this sense.
Dependence is perhaps the weakest of these relations; when we say that
one quantity depends on another, all we are saying is that changing the
value of the second quantity will alter the value of the first quantity, all
other things being equal. A slightly stronger asymmetric relation between
quantities might be called ‘determining’. If quantity X determines quantity
Y, this means that knowing the value of X (perhaps together with some
other quantities that we know about) is enough to uniquely specify the
value of Y. Finally, following Horwich (1987), causal relations can be
understood to be like determining relations, but with an extra “ingredient”
added, such as a requirement of time-ordering.

The point of the above story is not to provide a rational accounting of
dependence and causation. Instead, I simply want to argue that observa-
tions pertaining to the Dependence forms are relevant to what I informally
called ‘causal intuitions’ in my original conjectures. More specifically, I
want to assume that ‘dependence’ can be taken as a name for a weaker and
more encompassing category of relations that includes causal relations. So,
at least tentatively, we can rephrase the questions here as follows: Are there
differences between programming-physics and algebra-physics relating to
Dependence forms? Did these forms appear more often in programming
or was the sense of dependence somehow stronger?

We should begin by noting the simple fact that, in the case of algebra-
physics, students did make interpretations that treated the two sides of an

50 BRUCE L. SHERIN

expression asymmetrically. This is an extremely important observation.
Although algebraic equations are always, in a certain sense, symmetric,
it does not seem to be overly difficult for students — at least the rela-
tively advanced students in this study — to read asymmetries into these
statements. For example, although the equal sign in F = —kx specifies a
symmetric relation, it is not especially difficult for students to read this
asymmetrically as ‘force is dependent on position.’

This suggests that the mere fact that programming statements are
directed may not be as consequential as I initially conjectured. Nonethe-
less, I still want to argue that there is, in fact, an important sense in which
programming-physics draws more strongly on causal intuitions. In my
discussion of SERIAL DEPENDENCE, we saw that programming forces
students to engage with a unique set of issues-issues pertaining to which
quantities change first and which quantities determine which other quanti-
ties. For example, in their work on the Spring simulation, we saw that
students discussed whether it made more sense for position to determine
acceleration, or acceleration to determine position. The importance of
this observation is driven home if we think about algebra-physics. When
working within algebra-physics, we typically adopt the stance that many
quantities are changing constantly and simultaneously. For example, when
we write F' = ma, we do not need to think about whether force or accel-
eration changes first. In fact, since these and other quantities are changing
constantly, this question does not even make sense within algebra-physics.
In contrast, programming forces you to take changes that happen simul-
taneously and break them up into ordered operations. And, in doing so,
you have to decide which operation happens first. This is a step toward an
ordered, causal world.

7.2.4. Are Causal Intuitions Problematic for Physics Learning?

At the start of this paper, I said that I would not only ask how
programming-physics differs from algebra-physics. In addition, I want
to know whether programming-physics is a respectable form of physics.
Suppose we accept that programming tends to draw on causal intuitions
in a certain manner, and that it forces programmers to break up simultan-
eous changes into sequential operations. Then we have to ask: Are these
properties of programming desirable from the point of view of physics
instruction?

One reason we might be prompted to ask this question is that there are
actually reasons to believe that the use of causal intuitions in physics may
be dangerous or even incorrect. For example, an algebra-physics tradition-
alist might argue that it is incorrect to say that forces cause accelerations.

PROGRAMS AND ALGEBRAIC NOTATION 51

The equation F' = ma is symmetric in this regard; it doesn’t say that forces
cause accelerations any more than it says that accelerations cause forces.
Thus, in introducing causation or other asymmetric relations here, we
may be adding information that is not really part of a ‘correct’ physical
description of the world.

There are a number of responses to this objection. First, we must keep
in mind that a concern with how someone understands physics is not
the same thing as a concern with what is correct physics. Even the best
physicists may sometimes think of forces as causing accelerations, even
if they somehow know that this is not strictly correct. If it is the case that
physicists think causally, then it may not be a problem to teach students to
think causally.

Furthermore, I believe that it is immensely plausible that physicists
draw on causal and related intuitions. One reason that I believe that it
is plausible is that there are many important uses for causal intuitions.
For example, notice that, although it may not be right to say that forces
cause accelerations, it is not true that there is no asymmetry in the relation
between the concepts of force and acceleration. At the least, there is an
ontological asymmetry — forces and acceleration are two different sorts of
entities.

In addition, students do not always keep this ontological asymmetry
straight. One way that this problem manifests itself is in misinterpreta-
tions of the equation F' = ma. Sometimes students look at ' = ma and see
it as a statement that two forces are in balance (Sherin, 1996, in press;
di Sessa, 1984). This is incorrect because only the F' in this equation is
directly associated with a force or forces that exist in the world. Thus,
there is an asymmetry here that causal intuitions could help students to
keep straight: If you have in mind that forces cause accelerations, then
you are less likely to misinterpret this equation. This is the sort of place
that causal/dependence intuitions are useful. Instead of writing ' = ma and
seeing it in terms of BALANCING, it is likely better for students to write a
= F/m and recognize the DEPENDENCE form, with acceleration dependent
on force. (See di Sessa, 1993, for a similar argument.)

7.3. Some Differences not Captured by the Analysis: Channels of
Feedback

There are differences between programming-physics and algebra-physics
that are not captured by my main analysis. For example, I could have paid
more attention to what each of these notational systems allows. Algebraic
notation allows you to manipulate expressions to derive new expressions,
and programs can be run to generate dynamic displays. These differences

52 BRUCE L. SHERIN

Numerical Channel

g Form-Device Channel

Numerical Channel

? Form-Device Channel
L]
A Graphical Channel

=

Figure 18. Channels of feedback in programming and algebra.

in what is allowed are extremely important for several reasons. First, they
in part dictate what you can do with each of the notational systems. But,
even more important from our point of view, they will also have effects on
students’ understanding. This sort of second-order effect on understanding
is not directly captured by my form-device analysis.

To get at these additional issues, I am going to take the theoretical work
that I have already done and I will embed it in a somewhat broader view. At
the heart of this broader view is a notion that I call ‘channels of feedback’.
To explain channels of feedback I want to begin with an image of two
students (refer to Figure 18). One of these students is looking at a sheet
of equations that he generated on the way to solving a problem. The other
student is looking at a simulation program that she just wrote. Now I want
to ask the same question about both of these two students: How will each
of them decide if what they have just done is correct or ‘makes sense’?

Both of these students have a number of possible approaches they
can take in deciding if they are satisfied with what they have done,
and each of these alternative approaches involves a different ‘channel of
feedback’. For example, one way that the algebra student can draw conclu-
sions concerning the sensibility of expressions involves what I call the
‘numerical’ channel; he can plug in numbers and then judge the reason-
ableness of the numerical result, a procedure that essentially gives indirect
evidence as to whether the expression itself is also reasonable. The thing to
notice about the numerical channel is that it allows judgments to be made
concerning the sensibility of an expression without any attention being
paid to the actual structure the expression.

Of course, there are other ways for algebra students to judge the sensi-
bility of their expressions. In fact, a large part of this work has been to show
that students do have the ability to judge expressions by looking directly at
their structure. I call this channel — which was the focus of the majority of
this paper — the ‘form-device’ channel.

PROGRAMS AND ALGEBRAIC NOTATION 53

These same two channels — numerical and form-device — are also avail-
able to the programming student in Figure 18. The preceding sections can
be taken as an argument that forms and devices play a role in how programs
are understood. In addition, the students in my study did often look at the
values in their variables in order to decide if their simulations were correct.

Now, the central observation here is that programming has an important
channel of feedback that is not available in algebra-physics, what I call the
‘graphical’ channel. The point here is that programs can be run to generate
dynamic feedback in the form of a moving graphical display. This consti-
tutes a channel of feedback because, when a program is run, a student can
look at the display and judge if the simulated motion appears reasonable.

Programming’s graphical channel has a number of very nice properties.
One of these properties is that, in certain respects, looking at the dynamic
graphical display is like looking at a real motion in the physical world. This
means that, to judge whether these displays are correct, a student can draw
on some of the same capabilities that they use in recognizing and judging
the plausibility of physical phenomena. Compare this to the form-device
channel, which requires a substantial amount of specialized learning.

Finally, I just want to add one other piece to this image of chan-
nels of feedback. We can think of algebra and programming as each
having some generative machinery. In algebra-physics you can manipulate
existing expressions to generate new expressions, and you can substitute
numbers to obtain results. In programming-physics you can run programs
to generate a simulated motion in a dynamic display. So, one way to think
of the broader image I am building here is to imagine a core of generative
machinery with feedback at different places.

8. SUMMARY AND DISCUSSION

In this paper, I have taken seriously the notion that a programming
language can serve as a bona fide representational language for physics.
Adopting a tight focus around the representational languages, I considered
some of the implications of replacing algebraic notation with a program-
ming language. I began with two informal hypotheses. The first was
that programs are easier to interpret than equations, and the second
that programming privileges a different intuitive vocabulary than algebra.
Furthermore, in order to refine and address these two informal hypotheses,
I introduced two theoretical constructs, interpretive devices and symbolic
forms.

With regard to the first hypothesis, my conclusions were equivocal. On
the one hand, it seems that ascribing meaning to algebraic expressions is

54 BRUCE L. SHERIN

not as difficult as one might initially have thought. On the other hand,
the surrounding context provided by a program may provide additional
support for interpreting parts of a program. Furthermore, there is some
suggestion that interpretations of programs may differ in kind; in the prac-
tice of programming-physics studied, narrative interpretations that talked
through the time of a motion appeared to be more natural.

With regard to the issue of the intuitive vocabulary privileged by
programming, I believe that the analysis has uncovered some very
important differences. Programming seems to make close connections to
a whole new wing of intuitive accounts of phenomena, based around a
process vocabulary. Furthermore, it may build more strongly on causal
intuitions, and less on notions in the vicinity of BALANCING.

Given these results, I believe it is not too bad a summary to
describe algebra-physics as a physics of balance and equilibrium, and
programming-physics as a physics of processes and causation. Algebra-
physics trains students to seek out equilibria in the world. Programming
encourages students to look for time-varying phenomena, and supports
certain types of causal explanations, as well as the segmenting of the world
into processes.

It is important to keep in mind that these are differences in degree
only. Within algebra-physics, for example, it is certainly possible for
students to talk about processes, even though these accounts may not
be as directly reflected in representational forms. Nonetheless, these are
still important and fundamental differences — these high-level generaliza-
tions reflect real differences in the physical intuition that will result from
learning physics through the practice of algebra-physics, or through the
practice of programming-physics.

8.1. Toward a New Type of Whorfian Analysis

In the remaining two sub-sections of this paper, I conclude with some
discussion of the nature of the analysis and claims presented here. I begin
with the observation that, in some respects, my conclusions might be seen
to have a Whorfian flavor. Indeed, I am arguing that, in a deep sense, the
nature of an individual’s physics knowledge depends on particular details
of the representational language that is employed.

However, I hope that it is also clear that my claims are not as sweeping
as many assertions that have been made concerning the relationship
between language and thought, or the relationship between literacy and
thought. For example, it has been argued that, at least historically, the
development of writing led to dramatic intellectual achievements and
across-the-board changes in the way that individuals reason (Goody and

PROGRAMS AND ALGEBRAIC NOTATION 55

Watt, 1968; Olson, 1994). In contrast, I have not made any sweeping gener-
alizations about the nature of all of an individual’s knowledge. Rather, the
shifts in reasoning patterns I described are only posited for a narrow range
of cognitive activities, namely, for the way that individuals understand a
class of physical phenomena.

I believe that this is the right way to look for relationships between
external representations and thought. There are certainly pervasive and
widespread inter-connections of external representations and human
knowledge. Much of our knowledge simply must be adapted for thinking
and behaving in a world with representations. However, even if we believe
that external representations thoroughly infiltrate thought at a fundamental
level, there is no need to suppose that any particular external represen-
tations, including spoken language, are uniquely responsible for defining
human thought, or that they have effects on the broad character of human
thought.

Instead, I think that there are relationships between human knowledge
and external representations at a fundamental level, but that these rela-
tionships are local and multifarious. Thus, to explore these relationships,
we will simply need many more programs of the sort performed here.
However, there is the possibility of some great rewards if we undertake
this sort of program across a number of domains. If we look across multiple
projects of this sort, it may be possible to say something about typical ways
in which external representations infiltrate thought — typical mechanisms
and patterns of interaction — even if we cannot make sweeping claims
about how the broad character of human reasoning is tied to any individual
representations.

8.2. Final Discussion: What Sort of Analysis Was This?

What sort of analysis was this? I have self-consciously not adopted a
‘transfer’ perspective, one that focuses on whether teaching programming-
physics would help students to more easily learn traditional algebra-
physics. Nor have I undertaken to produce a comparative analysis based
on any sort of outcome measures. In other words, I did not develop a
single metric for evaluating ‘physics understanding’, and then attempt
to determine whether algebra-physics or programming-physics instruction
did better along this common metric.

Instead, I have simply accepted that programming changes the nature
of what is learned — it allows for the creation of a new practice — and I
have set out to explore some of the properties of this new practice. Such an
analysis will never give us outright answers as to whether programming-
physics or algebra-physics is a better way to teach physics, although it can

56 BRUCE L. SHERIN

inform instructional decisions. All it will tell us is how they differ, along
some dimensions.

Furthermore, I believe that we are increasingly in need of this type
of analysis. More and more, researchers are not trying to develop new
techniques for reaching the usual instructional goals. They are, instead,
often producing dramatically new images for instruction. This is this case
for much of the work that the Logo community has done in the last few
decades within the domain of mathematics. For example, Abelson and di
Sessa (1980) proposed a radically reformulated version of geometry based
around turtle graphics in Logo. In addition, Wilensky (1993) described a
new vision for mathematics education called “Connected Mathematics,”
which is, in part, rooted in the notion that programming can play the role
of an expressive medium for mathematics. Finally, Noss and Hoyles (1996)
presented an extended discussion of their new vision of mathematics
learning.

When we propose to radically transform a domain, simple comparative
evaluations will not do; we cannot merely ask which of two instructional
practices allows students to perform better along a common measure.
When we define new domains or, at least, define very different modes of
knowing a domain, we need techniques for understanding and comparing
the alternative practices created.

There are probably many such techniques one could employ. For
example, one might look to compare the skills that alternative instructional
practices produce; we could ask what variety of tasks a successful student
will be able to undertake following a particular variety of instruction. In
this paper, I have presented a different technique, tuned to answer what
I believe are some very important questions. I have been concerned with
characterizing the deep nature of the understanding of the physical world
associated with programming-physics and algebra-physics.

ACKNOWLEDGEMENTS

I owe a great debt to Andrea di Sessa for providing the intellectual founda-
tions of this work and supporting its development. In addition, many
people commented on the dissertation on which this work is based. Thanks,
especially, to Andrea di Sessa, Miriam Gamoran, Rogers Hall, and Barbara
White. Finally, I would like to thank the two anonymous reviewers for their
detailed and helpful comments. This work was supported, in part, by grant
number B-1393 to A. di Sessa from the Spencer Foundation.

PROGRAMS AND ALGEBRAIC NOTATION 57
APPENDIX A. KEY TO TRANSCRIPTS

(...) Textin parentheses indicates transcription uncertain.

/! Start of overlap with another speaker’s utterance.
Previous sound is drawn out.

” Speaker trails off without finishing statement.

- Word is cut off.

= Indicates that there is not the usual amount of silence between
two utterances.

(0.0) A pause, with approximate time in seconds.

[...] Non-linguistic act.

APPENDIX B. ALGEBRA TASKS

1. Shoved block A person gives a block a shove so that it slides across a table and then comes
to rest. Talk about the forces and what’s happening. How does the situation
differ if the block is heavier?

2. Vertical pitch (a) Suppose a pitcher throws a baseball straight up at 100 mph. Ignoring
air resistance, how high does it go? (b) How long does it take to reach that
height?

3. Air resistance For this problem, imagine that two objects are dropped from a great height.

These two objects are identical in size and shape, but one object has
twice the mass of the other object. Because of air resistance, both objects
eventually reach terminal velocity.

(a) Compare the terminal velocities of the two objects. Are their terminal
velocities the same? Is the terminal velocity of one object twice as large as
the terminal velocity of the other? (Hint: Keep in mind that a steel ball falls
more quickly than an identically shaped paper ball in the presence of air
resistance.)

(b) Suppose that there was a wind blowing straight up when the objects were
dropped, how would your answer differ? What if the wind was blowing
straight down?

4. Mass on a spring | A mass hangs from a spring attached to the ceiling. How does the equilib-
rium position of the mass depend upon the spring constant, k, and the mass,
m?

5. Stranded skater Peggy Fleming (a one-time famous figure skater) is stuck on a patch of
frictionless ice. Cleverly, she takes off one of her ice skates and throws it
as hard as she can. (a) Roughly, how far does she travel? (b) Roughly, how
fast does she travel?

6. Buoyant cube An ice cube, with edges of length L, is placed in a large container of water.
How far below the surface does the cube sink? (pjce = 0.92 g/cm3; Pwater =
1 g/cm3).

7. Running in the rain | Suppose that you need to cross the street during a steady downpour and you
don’t have an umbrella. Is it better to walk or run across the street? Make
a simple computation, assuming that you’re shaped like a tall rectangular
crate. Also, you can assume that the rain is falling straight down. Would it
affect your result if the rain was falling at an angle?

58 BRUCE L. SHERIN

APPENDIX C. PROGRAMMING TASKS

1. Shoved block Imagine that a block is resting on a table with friction. Program a simulation
for the case in which the block is given a short, hard shove.

How does the motion differ if the block is heavier? Can you show this in
your simulation? Modify your simulation if necessary.

2. Dropped ball The idea here is to make a realistic simulation of the motion of a ball that is
dropped from someone’s hand.

Using the tick model, redo your simulation of a dropped ball.

3. Tossed ball Now we want to imagine a situation in which a ball is tossed exactly straight
up and then falls back down to where it started.

Using the tick model, redo your simulation of a ball tossed straight up.

4. Air resistance (a) Make a new simulation of the DROP that includes air resistance. (Hint:
Air resistance is bigger if you’re moving faster.)

(b) Try running your simulation for a very long time. (The ball might go
off the bottom and come back in the top, that’s okay.) If you’ve done you’re
simulation correctly, the speed of the ball should eventually reach a constant
value. (The “terminal velocity.”)

5. More air resistance | Your simulation of a ball dropped with air resistance is included in this box.
(a) How does the terminal velocity of a dropped ball depend upon the mass
of the ball? For example, what happens to the terminal velocity if the mass
doubles? Can you show this with your simulation? Modify your simulation
if necessary.

(b) Suppose there was a wind blowing straight up. How would your
simulation and the terminal velocity be different?

(c) What if the wind is blowing straight down?

6. Mass on as spring | In this task, you must imagine that the block shown is attached to a spring
so that it oscillates back and forth across the surface of a frictionless table.

(a) Make a simulation of this motion.

(b) If the force, mass, and spring constant don’t appear in your simulation,
then add them.

NOTES

I Refer to Appendix A for a key to the notations used in transcripts.

2 The equation here actually applies for all times following the moment when terminal
velocity is reached. For this reason, it may not be immediately clear to the reader that this
instance should be categorized as SPECIFIC MOMENT, rather than STEADY STATE. This
type of subtlety is discussed in Sherin (1996). However, it is not of great significance for
the arguments to be made in this paper.

3 My interpretation of this episode, as well as of the episodes that follow, is at odds with
many other accounts of physics problem solving. For example, many other researchers
account for the construction of equations of this sort by an appeal to knowledge that is
more closely tied to physical principles (e.g., Chi et al., 1981; Larkin, 1983). However,
I will not attempt to present an argument for my position here. The interested reader is
referred to Sherin (in press) where this argument is made in detail.

4 Note that the PROP+ form also does not specify precisely what expression to write;
it only says to write an expression that is proportional to the quantity in question. This

PROGRAMS AND ALGEBRAIC NOTATION 59

ambiguity is a fundamental feature of symbolic forms. Forms specify the structure of an
expression only at a certain level of detail.

REFERENCES

Abelson, H. and di Sessa, A. (1980). Turtle Geometry. Cambridge, MA: MIT Press.

Bork, A. M. (1967). Fortran for Physics. Reading, MA: Addison-Wesley.

Bruner, J. S. (1966). On cognitive growth. In J. S. Bruner, R. R. Olver and P. M. Greenfield
(Eds), Studies in Cognitive Growth II (pp. 30-67). New York: John Wiley and Sons.

Carpenter, T. P. and Moser, J. M. (1983). The development of addition and subtraction
problem-solving skills. In T. P. Carpenter, J. M. Moser and T. A. Romberg (Eds),
Addition and Subtraction: A Cognitive Perspective (pp. 9-24). Hillsdale, NJ: Erlbaum.

Chi, M. T. H., Feltovich, P. J. and Glaser, R. (1981). Categorization and representation of
physics problems by experts and novices. Cognitive Science 5: 121-152.

di Sessa, A. A. (1984). Phenomenology and the evolution of intuition. In D. Gentner and
A. Stevens (Eds), Mental Models. Hillsdale, NJ: Lawrence Erlbaum.

di Sessa, A. A. (1986). From logo to boxer. Australian Educational Computing 1(1): 8-15.

di Sessa, A. A. (1989). A child’s science of motion: Overview and first results. In U. Leron
and N. Krumholtz (Eds), Proceedings of the the Fourth International Conference for
Logo and Mathematics (pp. 211-231). Haifa, Israel.

di Sessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction 10(2
and 3): 165-255.

di Sessa, A. A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge,
MA: MIT Press.

di Sessa, A. A. and Abelson, H. (1986). Boxer: A reconstructible computational medium.
Communications of the ACM 29(9): 859-868.

di Sessa, A. A., Abelson, H. and Ploger, D. (1991). An overview of Boxer. Journal of
Mathematical Behavior 10(1): 3—15.

Ehrlich, K. and Soloway, E. (1984). An empirical investigation of tacit plan knowledge in
programming. In J. C. Thomas and M. L. Schneider (Eds), Human Factors in Computer
Systems (pp. 113-133). Norwood, NJ: Ablex.

Ehrlich, R. (1973). Physics and Computers: Problems, Simulations, and Data Analysis.
Boston: Houghton Mifflin.

Feynman, R. (1965). The Character of Physical Law. Cambridge, MA: MIT Press.

Feynman, R. P,, Leighton, R. P. and Sands, M. (1963). Lectures on Physics. Reading, MA:
Addison-Wesley.

Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence 24: 85-168.

Fuson, K. C. (1992). Research on whole number addition and subtraction. In D. A. Grouws
(Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 243-275).
New York: Macmillan Publishing Company.

Goody, J. (1977). The Domestication of the Savage Mind. New York: Cambridge Univer-
sity Press.

Goody, J. and Watt, I. (1968). The consequences of literacy. In J. Goody (Ed.), Literacy in
Traditional Societies (pp. 304-345). Cambridge, England: Cambridge University Press.

Gould, H. and Tobochnik, J. (1988). An Introduction to Computer Simulation Methods.
Reading, MA: Addison-Wesley.

Hayes, P. J. (1979). The naive physics manifesto. In D. Michie (Ed.), Expert Systems in the
Micro-Electronic Age (pp. 242-270). Edinburgh, Scotland: Edinburgh University Press.

60 BRUCE L. SHERIN

Hayes, P. J. (1984). The second naive physics manifesto. In J. Hobbs (Ed.), Formal
Theories of the Commonsense World (pp. 1-36). Hillsdale, NJ: Ablex.

Herscovics, N. and Kieran, C. (1980). Constructing meaning for the concept of equation.
Mathematics Teacher 73(8): 572-580.

Horwich, P. (1987). Asymmetries in Time. Cambridge, MA: MIT Press.

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination,
and Reason. Chicago: University of Chicago Press.

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.),
Handbook of Research on Mathematics Teaching and Learning (pp. 390-419). New
York: Macmillan.

de Kleer, J. and Brown, J. S. (1984). A qualitative physics based on confluences. Artificial
Intelligence 24: 7-83.

Larkin, J. (1983). The role of problem representation in physics. In D. Gentner and A.
Stevens (Eds), Mental Models (pp. 75-98). Hillsdale, NJ: Erlbaum.

Larkin, J., McDermott, J., Simon, D. P. and Simon, H. A. (1980). Expert and novice
performance in solving physics problems. Science 208: 1335-1342.

Letovsky, S., Pinto, J., Lampert, R. and Soloway, E. (1987). A cognitive analysis of a code
inspection. In G. M. Olson, S. Sheppard and E. Soloway (Eds), Empirical Studies of
Programmers: Second Workshop (pp. 231-247). Norwood, NJ: Ablex.

Linn, M. C., Sloane, K. D. and Clancy, M. J. (1987). Ideal and actual outcomes from
precollege Pascal instruction. Journal of Research in Science Teaching 24(5): 467—490.

MacDonald, W. M., Redish, E. F. and Wilson, J. M. (1988). The M.U.P.P.E.T. manifesto.
Computers in Physics 2: 23-30.

Mann, L. M. (1991). The implications of functional and structural knowledge represen-
tations for novice programmers. Unpublished dissertation manuscript. University of
California, Berkeley.

McClosky, M. (1984). Naive theories of motion. In D. Gentner and A. Stevens (Eds),
Mental Models (pp. 289-324). Hillsdale, NJ: Erlbaum.

Misner, C. W. and Cooney, P, J. (1991). Spreadsheet Physics. Reading: MA: Addison-
Wesley.

Noss, R. and Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures
and Computers. Dordrecht: Kluwer Academic Publishers.

Olson, D. R. (1994). The World on Paper. New York: Cambridge University Press.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Redish, E. F. and Risley, J. S. (1988). The Conference on Computers in Physics Instruction:
Proceedings. Redwood City, CA: Addison-Wesley.

Redish, E. F. and Wilson, J. M. (1993). Student programming in the introductory physics
course: M.U.P.P.E.T. Am. J. Phys. 61: 222-232.

Reed, S. K. (1998). Word Problems: Research and Curriculum Reform. Mahwah, NJ:
Erlbaum.

Repenning, A. (1993). Agentsheets: A tool for building domain-oriented dynamic, visual
environments. Unpublished dissertation manuscript. University of Colorado.

Resnick, M. (1994). Turtles, Termites and Traffic Jams: Explorations in Massively Parallel
Microworlds. Cambridge, MA: MIT Press.

Riley, M. S., Greeno, J. G. and Heller, J. I. (1983). Development of children’s problem-
solving ability in arithmetic. In H. P. Ginsberg (Ed.), The Development of Mathematical
Thinking (pp. 153—-196), New York: Academic Press.

Scribner, S. and Cole, M. (1981). The Psychology of Literacy. Cambridge, MA: Harvard
University Press.

PROGRAMS AND ALGEBRAIC NOTATION 61

Sfard, A. (1987). Two conceptions of mathematical notions: Operational and structural.
In J. C. Bergeron, N. Herscovics and C. Kieran (Eds), Proceedings of the Eleventh
International Conference for the Psychology of Mathematics Education (pp. 162—169).
Montreal, Canada.

Sfard, A. (1991). On the dual nature of mathematical conceptions. Educational Studies in
Mathematics 22: 1-36.

Sherin, B. (1996). The symbolic basis of physical intuition: A study of two symbol systems
in physics instruction. Unpublished dissertation manuscript. UC Berkeley.

Sherin, B. (in press). How students understand physics equations. Cognition and Instruc-
tion.

Sherin, B., di Sessa, A. A. and Hammer, D. (1993). Dynaturtle revisited: Learning
physics through the collaborative design of a computer model. Interactive Learning
Environments 3(2): 91-118.

Soloway, E. (1986). Learning to program = Learning to construct mechanisms and
explanations. Communications of the ACM 29(9): 850-858.

Vygotsky, L. (1986). Thought and Language. Cambridge, MA: MIT Press.

Whorf, B. L. (1956). Language, Thought, and Reality: Selected Writings of Benjamin Lee
Whorf. Cambridge, MA: MIT Press.

Wilensky, U. (1993). Connected mathematics — building concrete relationships with
mathematical knowledge. Unpublished dissertation manuscript. MIT.

Wilensky, U. (1997). What is normal anyway? Therapy for epistemological anxiety.
Educational Studies in Mathematics 33(2): 171-202.

Wilensky, U. (1999). GasLab-an extensible modeling toolkit for exploring micro- and
macro- views of gases. In N. Roberts, W. Feurzeig and B. Hunter (Eds), Computer
Modeling and Simulation in Science Education. Berlin: Springer Verlag.

School of Education and Social Policy
Northwestern University

2115 N. Campus Drive

Evanston, IL 60208-2610

E-mail: bsherin@northwestern.edu

